Enhancement of the Extraction of Uranium from Seawater

Chanel Tissot – University of Maryland Aaron Barkatt – The Catholic University of America Jay LaVerne – University of Notre Dame Mohamad Al-Sheikhly, University of Maryland

CIRMS Meeting 2012 21st Annual October 22-25 NIST-Gaithersburg. Maryland

Proposed Scope

- Objective of the proposed study:
 - Develop novel types of adsorbing polymeric fabrics for significantly enhancing the capacity for the extraction of uranium from seawater
- Key differences between our work and the Japanese published work:
 - Use of acrylated phosphonate monomers instead of amidoxime
 - High selectivity of organic phosphate compounds towards U(VI) over a broad pH range
 - New substrates (such as nylon, polyurethane, and polypropylene) instead of highdensity polyethylene
 - Improved physical properties with excellent degradation resistance and reusability
 - Optimization of fabric geometry through use of Winged Fibers
 - High surface area to volume ratio to increase grafting densities

Path to Accomplishing Scope

- Maximize radical concentration for grafting
 - Utilize electron beam and gamma radiation
 - Control radiation dose, dose rate and temperature
 - Select substrates with large surface area
 - Increase length and number of adsorbing groups (grafting density)
- Select ideal adsorbent compounds with:
 - High affinity for uranium over pH range of seawater
 - Capability of stable grafting onto substrate
- Select ideal substrate materials with:
 - Favorable mechanical properties
 - High spin concentration after irradiation
- Improve extraction efficiency
 - Increase material durability, stability and reusability in real seawater
 - Test scaled-up materials on-site

Interaction of Ionizing Radiation with Matter

Direct Effect

> $M + e^{-}$ M^+ , e^- , M^- , M^* (Ionization, excitation)

Indirect Effect

Secondary reactions of solute with primary species formed by solvent

Initiation, Propagation and Termination Reactions

- 1) Crosslinking between substrate molecules, no reaction with monomer
- 2) Monomer homopolymerization without grafting to substrate
- 3) Grafting of monomer onto substrate, formation of brush-like structures

UMD Co-60 Gamma Irradiator

Stainless steel top hat

- Two sources of ten Co-60 pencils
 - Newer source 99,874 Ci (07/09)
 - Older source -1,342 Ci (07/09)
- Unique walk-in design allows for irradiation of a large range of sample sizes
- Dose rates of 0.1 to 70 kGy/hr
- Systems available for cooling or heating during irradiation
- Enables uniform irradiation of larger sample sizes, ideal for process scale-up

UMD Electron Beam Linear Accelerator (LINAC)

- Pulsed beam with 3 µs pulse width
 - Pulsed beam allows study of radical kinetics and mechanisms
- Electron kinetic energies of 1 to 9 MeV
- Capable of very high dose rates
 - penetration depth increases with electron kinetic energy
 - Shorter irradiation times minimize oxidation effects

Target window-

Evacuated beam line

Pulse Radiolysis

- Fast chemical reaction kinetics (rate constant, k) & radiation yield (G-value) can be studied in micro to femto-second range
- Buildup and decay of acrylated phosphonate radicals to be studied in detail

Monomer Selection and Testing

U sorption of each monomer

After charcoal testing, the five

monomers were tested with

electron beam and gamma

The chosen monomer, **Bis(2-**

(B2MP), consistently featured

significantly higher distribution

ICP-AES

irradiation

for U

- Japanese approach utilized acrylonitrile groups on polyethylene adsorbents
- Molecules containing phosphate groups have potential to enhance Uranium adsorption capabilities and rates
- Several acrylated phosphonic acids and phosphonates selected and tested

Monomers y-irradiated at 5 kGy/hr for one hour onto Winged Nylon

Selection of Polymer Substrate

- Polymer substrates besides polyethylene have been considered and tested
- Ultra-high surface area polymers (such as Winged Fibers) have potential to increase grafting density
- Polymer substrates for testing included:
 - polypropylene
 - winged polypropylene
 - nylon
 - winged nylon
- Samples testing using both direct and indirect grafting methods as well as EPR analysis
- Some materials revealed poor mechanical properties and/or low grafting densities
- One material (winged nylon 6) featured both high grafting densities, high distribution coefficients and favorable mechanical properties

Winged Fiber from Allasso Industries

Substrate samples ready for EPR (in vial) and adsorbance testing (in bag) 10

Optimizing Radiation Conditions

Approach:

- Irradiate all substrate materials in Co-60 gamma or electron beam linear accelerator
 - Electron beam:
 - 100-300 kGy total dose
 - 16 Gy per 3µ pulse
 - 112 pps
 - Co-60 gamma irradiator:
 - 1-200 kGy total dose
 - 1-75 kGy/hr
- Determine free radical concentration with electron paramagnetic resonance (EPR) to decide between direct and indirect grafting
- Graft best substrate materials with most promising monomers using Co-60 gamma and electron beam radiation
- Determine grafting densities and distribution coefficients
- Determine best combination of substrate material and monomer

Goal : to achieve the highest concentration of free radicals available

- Anaerobic irradiation and grafting
 - To prevent the reaction of free radicals with oxygen
- Low dose rate irradiation
 - To decrease undesired radicalradical-interactions (crosslinking, homopolymerization)

<u>Ideal Conditions:</u> Monomer – B2MP Substrate – Winged Nylon Grafting Method - Direct

Direct Grafting with Nylon 6,6

Nylon substrate irradiated in anaerobic aqueous solution with Bis(2-methacryloxyethyl)phosphonate (B2MP)

<u>Advantages:</u>

- Minimal pre- and post-treatment
 - Only requires N2 purging and contact time
- Entire procedure performed at room temperature
 - No low-temp irradiation or heated grafting
- No organic solvents
 - Minimal environmental impact, ideal for ocean testing
- Use of gamma radiation instead of electron beam
 - Easily provides uniform irradiation over large surface areas at a wide range of dose rates, ideal for process scale-up

Vial for direct grafting: pre-irradiation

Vial for direct grafting: post-irradiation 12

Experimental Procedure: Direct Grafting

- 1. Nylon sample placed in 100 mM B2MP solution with DI water, vial sealed and purged with N₂
- 2. Vial irradiated at desired dose rate and total dose
- 3. Nylon allowed to rest in the closed vial overnight
- 4. Grafted sample removed from vial, washed, dried and weighed to determine grafting density
- 5. Sample placed in solution of real seawater doped with uranyl acetate for one hour
- 6. Adsorbed sample removed, remaining solution tested for uranium concentration with ICP-AES
- 7. Distribution coefficient (k_D) determined

Distribution Coefficients and Percent Sorption

Dose Rate (kGy/hr)	Total Dose (kGy)	Distribution Coefficient (kɒ) (mL/g)	Grafting Density (%)	Percent Sorption (%) of U in Real Seawater		
1	5	9,031.8	114.6	98.2		
1	20	9,383.8	79.1	97.8		
10	80	9,880.8	124.4	98.4		
1	80	13,488.8	80.6	98.6		
5	40	15,065.8	110.40	98.8		
10	40	21,406.0	109.60	99.2		
5	5	26,980.0	104.2	99.4		
1	60	33,133.4	86.6	99.4		
10	60	63,286.3	108.9	99.7		

All samples irradiated in Co-60 gamma source Substrate: Winged Nylon Monomer: B2MP

- Best results summarized in table to the left
- Significant room for improvement, much higher distribution coefficients anticipated as method is refined
- U distribution coefficient of Tamada et. al. (2009) – 1.99x10⁴ mL/g

Results: Distribution Coefficient Dependence on Dose Rate and Total Dose

Substrate – Winged nylon Monomer – B2MP n = 43 samples Dose rates = 1-20 kGy/hr Total doses = 1-80 kGy/hr

- Long irradiations favorable
 - High total dose
- Low to intermediate dose rates (1, 5, 10 kGy/hr)
- Irradiations at high dose rates (>70 kGy) and high total dose (100-300 kGy) not as effective for both gamma and electron beam
- All measurements to be repeated

Grafting Density Dependence on Dose Rate and Total Dose

EPR of Winged Nylon

Radical Mechanisms of Nylon 6,6

Radical mechanisms and kinetics to be determined with femtosecond pulse radiolysis

when have

Quintuplet structure of roomtemperature measured Nylon 6,6 suggests Radical A or Radical C as the dominant species

Why use Scanning Electron Microscope?

Micro-scale morphology of uraniumadsorbed fabric studied using UMD's Field Emission SEM

Winged nylon: before radiation-induced grafting

After grafting and U adsorption (2 views)

Scanning Electron Microscope

-Winged nylon directly grafted with Bis(2-methacryloxyethyl) phosphonate

- Irradiated at 20 kGy/hr to 80 kGy total dose
- -Contacted with U solution in real seawater for 1 hour
- -Distribution coefficient (kD) ~6000

Phosphorus, Uranium and Magnesium 20

Carbon and Oxygen

Sodium and Chlorine

Why use Energy-Dispersive X-ray Spectroscopy (EDS)?

- A focused electron beam is rastered across the polymer surface, a secondary (backscatter) electron signal is processed to provide a spectrum and spatial map
- Provides localized elemental identification and compositional information
- Reveals regions rich in or lacking a specific element
- Shows other elements competing with uranium for binding sites

SEM/EDS at UMD nanocenter

Energy-Dispersive X-ray Spectroscopy (EDS)

-Winged nylon direct grafted with B2MP - Irradiated at 20 kGy/hr to 80 kGy total dose -Contacted with U solution in real seawater for 1 hour -Distribution coefficient (kD) ~6000

lsotope	Conc.(wt %)	Conc. (atom %)	Error (%)
Carbon	40.20	52.20	13.6
Oxygen	43.61	42.51	14.7
Chlorine	3.22	1.41	0.1
Sodium	1.53	1.04	0.1
Uranium	7.22	0.47	0.3
Magnesium	1.64	1.05	0.1
Phosphorus	2.59	1.31	0.1

- Highly competitive ions include Na⁺, Cl⁻ and Mg²⁺
- Even at only 0.47 atom %, percent sorption of Uranium by sample was 98%

Γωο-Υ	ear Revised Time	line			Complete	ed 📖	\implies	In progre	ess/TBD					
		Year One												
		Oct-11	Nov-11	Dec-11	Jan-12	Feb-12	Mar-12	Apr-12	May-12	Jun-12	Jul-12	Aug-12	Sep-12	Oct
)evelopment	Selection of candidate													
of Adsorbent	substrate polymers													
Materials	Selection of adsorbent													
-	monomer													
	EPR analysis of materials													
	Crafting of candidate materials													
	with adsorbing monomor													
	with adsorbing monomer													_
	Analysis of radical mechanisms													
	Stucture characterization													
Preliminary	Development of methods of													
U adsorption	analysis for U													
experiments														
on grafted	Dynamic testing for capacity													
polymers	and kinetics of U uptake													
							Y	ear Two	<u> </u>					
		Nov-12	Dec-12	Jan-13	Feb-13	Mar-13	Apr-13	May-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov
	Analysis of effects of pH.										Ĵ			
	temperature, salinity and													
	organics on material													
Laboratory	Production of large amounts of													
experiments	materials for testing													
oxportinion to	Elution and reusability testing		1			$ \rightarrow $								
						î								
	Selection of suitable ocean site													
Ocean	Ocean testing												\Rightarrow	
testing of	Final determinations of													
finalized	extraction efficiency and												$ \rightarrow$	
materials	economics													1
												4	23	7
	Project completion													

Next Steps

Summary

- Bis(2-methacryloxyethyl) phosphonate (B2MP) selected as chelating monomer
- Winged nylon 6,6 selected as polymer substrate material
- Co-60 gamma irradiation favored over electron beam
- Direct grafting method (in combination with selected monomer and substrate) chosen for the following reasons:
 - EPR revealed rapid decay in radical concentration
 - No cooling or heating required during irradiation or grafting
 - No organic solvents required
 - Shorter grafting time with little to no pre- or post-treatment
- Most successful UMD sample has shown a k_D of >63,000 mL/g
 - Japanese researchers (Tamada et. al, 2009) published a k_D of only 19,900 mL/g
 - Average kD of UMD direct grafted samples (including poorly grafted samples) >8,000 mL/g
- Optimization still in progress, there remains significant room for improvement!