

Determining the effects of well-type chamber sample-volume dependence on the current clinical method used to determine the activity for ⁹⁰Y microsphere treatments

Adam B. Paxton, John A. Micka, and Larry A. DeWerd University of Wisconsin Medical Radiation Research Center

CIRMS Annual Meeting 19 October 2011

Overview

- ⁹⁰Y microspheres motivation for this work
- Experimental setup and measurement
 - Well-type chambers
 - Source holder
 - Vials
- Results
 - Calibration coefficients
 - Volume effects on delivered activity
- Conclusions

⁹⁰Y microspheres

- Treatment for liver malignancies
- Delivered via catheterization of femoral artery
- ~30 μm in diameter
- ⁹⁰Y is a beta emitter
 - 64 h half-life
 - $E_{\beta max} = 2.28 \text{ MeV}$
- Two commercial products
 - SIR-Spheres[®] by Sirtex Medical
 - TheraSphere[®] by MDS Nordion

SIR-Spheres[®] preparation

- 3 GBq in 5mL of water in a glass shipping vial
- Rx activities are usually 1.0 2.5 GBq
- To obtain desired activity:
 - Initial measurement of shipping vial in dose calibrator
 - Draw out desired volume with a syringe
 - Re-measurement of shipping vial
 - Subtract results and confirm activity contained in syringe
- Contents of syringe placed in v-vial
- V-vial placed in delivery apparatus

SIR-Spheres[®] preparation

• How does this affect the delivered activity?

Goals:

- Determine volume-specific calibration coefficients (N_A in units MBq / pA)
 - Two chambers
 - Both vials (glass shipping vial and plastic v-vial)
- Use N_A to determine the actual activity delivered

Calibration source

- NIST Standard Reference Material provides a ⁹⁰YCl₃ standard solution
 - Massic activity (MBq/g)
 - Uncertainty <1% (k = 2)</p>
- Sartorius balance (max = 110 g, accuracy = +/- 0.1 mg)
 - Mass of solution provides a known activity

Sartorius balance

Chambers and source holders

- Well-type chambers
 - Standard Imaging (SI)
 IVB1000 well chamber
 - Capintec 12-atm dose calibrator
 - Each attached to a SI Max 4000 electrometer
- Source holders
 - Constructed of PMMA
 - Collars for both shipping and v-vial

Traditional "dipper" holder

shipping vial

v-vial

Measurements

- Each vial filled with 1 5 mL in 1 mL increments
- Mass of solution measured for each volume level
- 4 x 30 s charge measurements
 - Source rotated within chamber in 90° increments
- Average of charge measurements used to calculate ionization current
- Calibration coefficients (MBq / pA) were calculated for each combination of volume, vial, and chamber

Well chamber response

Well chamber response

Tables of calibration coefficients

Standard Imaging IVB1000 well chamber:

	V-v	Shipping vial			
Volume (mL)	Cal Coeff (MBq/pA) % Diff from 5 mL		Cal Coeff	(MBq/pA)	% Diff from 5 mL
5	1.663	-	17	.65	-
4	1.556	-6.43	17	.38	-1.51
3	1.496	-10.0	16	.33	-7.46
2	1.441	-13.4	13	.99	-20.7
1	1.294	-22.2	9.6	582	-45.1

Capintec 12-atm dose calibrator:

	V-vial		Shipping vial		Shipping vial w/ dipper	
Volume	Cal Coeff	% Diff from	Cal Coeff	% Diff from	Cal Coeff	% Diff from
(mL)	(MBq/pA)	5 mL	(MBq/pA)	5 mL	(MBq/pA)	5 mL
5	4.406	-	5.152	-	5.436	-
4	4.377	-0.665	5.114	-0.750	5.418	-0.324
3	4.372	-0.779	5.026	-2.44	5.331	-1.92
2	4.375	-0.714	4.883	-5.23	5.211	-4.14
1	4.349	-1.30	4.549	-11.7	4.872	-10.4

Effects on activity determination

- Recall activity preparation
- Assume a Rx level
 - e.g., 2.4 GBq

 $3 \,\mathrm{GBq} - (0.6 \,\mathrm{GBq})(\frac{N_{\mathrm{A,1\,mL}}}{N_{\mathrm{A,5\,mL}}}) = A_{\mathrm{actual}}$

 $3 \operatorname{GBq} - 0.6 \operatorname{GBq} = 2.4 \operatorname{GBq}$

- 0.6 GBq would occupy 1 mL
 - Assuming uniform distribution of the microspheres
- The 1 mL calibration coefficient is used to calculate the actual activity

$$\begin{split} 3\,\mathrm{GBq} - 1.2\,\mathrm{GBq} &= 1.8\,\mathrm{GBq} \\ 3\,\mathrm{GBq} - (1.2\,\mathrm{GBq})(\frac{N_{\mathrm{A,2\,mL}}}{N_{\mathrm{A,5\,mL}}}) = A_{\mathrm{actual}} \end{split}$$

$$3 \,\mathrm{GBq} - 1.8 \,\mathrm{GBq} = 1.2 \,\mathrm{GBq}$$

$$3\,\mathrm{GBq} - (1.8\,\mathrm{GBq})(\frac{N_{\mathrm{A,3\,mL}}}{N_{\mathrm{A,5\,mL}}}) = A_{\mathrm{actual}}$$

Actual activity and difference from Rx

Standard Imaging IVB1000 well chamber:

	V-	vial	Shipping vial		
Rx Activity	Actual Activity		Actual Activity	y	
(GBq)	(GBq)	% Diff from Rx	(GBq)	% Diff from Rx	
2.4	2.53	5.5	2.67	11	
1.8	1.96	8.9	2.05	14	
1.2	1.38	15	1.33	11	

Capintec 12-atm dose calibrator:

	V-vial		Shipping vial		Shipping vial w/ dipper	
Rx Activity	Actual Activit	Σ γ	Actual Activit	У	Actual Activity	
(GBq)	(GBq)	% Diff from Rx	(GBq)	% Diff from Rx	(GBq)	% Diff from Rx
2.4	2.41	0.33	2.47	2.9	2.46	2.6
1.8	1.81	0.48	1.86	3.5	1.85	2.8
1.2	1.21	1.2	1.24	3.7	1.23	2.9

- The IVB1000 would not be ideal for these measurements
- Calibration and measurement in the v-vial would reduce the uncertainty in the activity determination with the 12-atm
 - Alternatively, volume corrections could be used with shipping vial
- Calibration in v-vial would also provide more accurate posttreatment measurements (if necessary)
- Measurement and calibration in the v-vial would require a modified or new holder
 - V-vial may tip or fall out of the "dipper" holder

- NIST Ionizing Radiation Division Student Travel Grant
 - Katy Nardi and Wanda Lease
- Wendy Kennan
- Reed Selwyn
- Jerry Nickles and the UW Cyclotron Gang
- Customers of the UW Radiation Calibration Lab, whose calibrations help fund ongoing research at the UW Medical Radiation Research Center

Thank you for your attention Questions?

SI IVB1000 well chamber results

Capintec 12-atm dose calibrator results

0

Actual activity and difference from Rx

	V-v	vial	Shipping vial		
	Actual Activity		Actual Activity		
Rx Activity (GBq)	(GBq)	% Diff from Rx	(GBq)	% Diff from Rx	
2.4	2.53	5.5	2.67	11.3	
1.8	1.96	8.9	2.05	13.8	
1.2	1.38	15.0	1.33	11.2	
0.6	0.75	25.7	0.64	6.0	

V-vial		vial	Shippi	ng vial	Shipping vial w/ dipper	
Rx Activity	Actual Activity		Actual Activity		Actual Activity	
(GBq)	(GBq)	% Diff from Rx	(GBq)	% Diff from Rx	(GBq)	% Diff from Rx
2.4	2.41	0.3	2.47	2.9	2.46	2.6
1.8	1.81	0.5	1.86	3.5	1.85	2.8
1.2	1.21	1.2	1.24	3.7	1.23	2.9
0.6	0.62	2.7	0.62	3.0	0.61	1.3

