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Shape Memory Polymers

Shape memory polymers (SMPs) have the ability to remain in a deformed
shape and then recover their original shape after introduction to a stimulus.
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Thermally actuated shape recovery from coiled (secondary)
geometry to strip-like (primary) geometry for polyurethane
SMP in water at 70 C
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« May 2009 marked the first-ever FDA approval for an
SMP-based biomedical implant device

* This device, a suture anchor device called Morphix®,
was developed by MedShape Solutions® in Atlanta, GA,
and has recently been implanted into humans for the
first time.

Morphix:  An  SMP-
based suture anchor
device, which received
FDA approval in May
2009

source: medshapesolutions.com
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SMP Processing Limitations

« Many applications require SMP-based components with
complex geometries.

« Covalently crosslinked SMPs are produced by one-step
polymerization

 This process does not allow for processing by injection
molding.
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Covalently Crosslinked SMP Does not flow = NO injection molding
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Objectives

H
N-pHN__O_ _O. _NHRr-NH-*
FINAL Traditional SMP % Ri ﬂ/ RS ! l_D\
THERMOSET 0O CI) O
polymerization 1
> - Shape-memory properties O~ ™NH
- Not melt-processable R 1
- Simple shapes only HN
~
CI)H
Ry INTERMEDIATE COMPLEX FINAL
HO OH THERMOPLASTIC PROTOTYPE THERMOSET
OCN-R,~NCO — — / )é: 3{ ), — A Post Pplymerization
MIOFICSCK polymer- injection heat or < Croaslinked SMF
ization molding radiation - Shape-memory properties
HO-R,-OH

- Complex shapes possible

(ﬂ)\ O 0O @)
~HNRISNH OJRz-oJ%L* \@N’Rl“NHlLO’RZ‘OJL}*
O

o)

source: Hearon 2010 !



TEXAS A&M ENGINEERING

Sample Preparation

|. Linear, olefinic polyurethanes were prepared from the
following monomers:

HO—~—~=——OH HO OH OCN—~—x——NCO ocN<_»~ »Nco

2-butene-1 ,4-di0| 1’4-butanedi0| TMHDI DCHMDI

ll. Radiation sensitizers were solution blended (THF)
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lll. Crosslinking was attempted by irradiating samples (1-100
kGy, 1.8 MeV, 0.25 kGy/min, Van de Graaff)
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E-beam is predicted to
generate radicals by
extracting oa-carbamate
hydrogens

The unique structure of
2-butene-1,4-diol

provides resonance
stabilization for radicals

Hypothesis
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Rubbery Modulus
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Talloring Rubbery Modulus by Sensitizer Content
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Summary

1. PU SMPs were developed that can be first made into
thermoplastic precursors and later crosslinked via electron
beam irradiation.

2. These materials appear to have potential use in a variety of
Industrial applications.

3. Rubbery modulus can be controlled by varying either
radiation dose or radiation sensitizer content

15
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Conclusions
1. PU SMP-based devices with complex geometries can now
be mass-produced

2. These devices have an extended application range
because of the high recovery stress of these SMPs

injection molding
possible broadened application range 16
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Questions?

18
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Supplementary Slides
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Collapse Pressure of Laser Etched SMP (Mitsubishi) Stent

20

18]

16 |

T

_ 14 < Onset collapse 4.7 psi = max
E 12 1 + Full collapse pressure
g1 T exerted by a
2 8d, T + vasospastic
o g T artery

L T

N ST s

= R R o
0 . .

32 37 42 47 52 o7 62 67 72

Temperature (°C})
source: Baer 2009

20



TEXAS A&M ENGINEERING

Commercially Available Stents

TABLE Il. Collected Data on Collapse Pressure of Commercially Available and Prototype Stents

Collapse Pressure (psi)

Diameter Length Thickness

Stent Type Manufacturer Material (mm) (mm) (mm) Onset Full Ref.
Solid tubular LLNL Polyurethane 4 18 0.25 15.5 23

Laser etched LLNL Polyurethane 4 18 0.25 5.9 10.5

Multi-link Vision Guidant Cobalt Chromium 4 15 0.1 10.8 13.6

BxVelocity Cordis Steel 316L 4 13 0.22 26.3 36.4

Wiktor Medtronic Tantalum 3.5 16 10.1 30
Tenax Complete Biotronik Steel 316L 3.5 15 7.7 30
NIR Primo Scimed Steel 316L 3.5 16 =21.8 30
Crossflex Cordis Stainless steel 3.5 15 8.7 31
BeStent Brava Medtronic Stainless steel 3.5 15 14.5 31
Tenax XR Biotronik Steel 3161 3.5 15 8.7 31
Wiktor Medtronic Tantalum 3 15 <4.3" 11.6 29
Crossflex Cordis Stainless steel 3 15 159 31.9 29
GFX stent AVE Steel 316L 3 18 <10.1* 29 29
PLLA 2.4 helical PLLA 3 327° 26.1-36.2 35
Multi-link Tetra Guidant Stainless steel 37 ? 29-31.9 35
PLLA mesh PLLA* PLLA 4 ? 23.8-39.7 28

*Pressure taken at 2% change in diameter.
b Evaluated from picture.

source: Baer 2009 21
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Constrained Recovery Results

Radiation Crosslinked Sample
----- Thermoplastic Sample
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Cyclic Free Strain Recovery Results
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Cyclic free strain recovery data for thermally crosslinked (a) and
thermoplastic (b) 20% DCHMDI samples
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Resonance Stabilization of f-Unsaturated Group
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Prototype Synthesis

« The radiation crosslinked 0%
DCHMDI sample was selected for
use in the design of a complex
medical device.

« Oropharyngeal airway devices keep

patients’ airways open during
medical procedures requiring
sedation.

 This device utilizes SMP technology to conform
precisely to patients’ throats to reduce trauma.

« An SMP-based airway could potentially reduce the
number of standard airway device sizes from 12 to 5
or fewer standard sizes.
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Characterization Methods

« DMA, sol/gel analysis to evaluate
extent of crosslinking in samples

« DSC to determine Tg and %
crystallinity

* Further DMA, tensile testing, and
shape-recovery analysis to evaluate
biomedical relevance of SMPs

| ; TA Instruments
AN ﬁ QSeries Q800
s DMA

MTS Systems Insight 2

Tensile Testing Apparatus ”
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Mechanical Characterization: To Evaluate
Biomedical Relevance
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