

Self-Contained Blood/Biological Irradiator (SCBI) using Flat Panel X-ray Sources

CIRMS Meeting 10/18/2010

> Stellarray, Inc. Austin, TX

Mark Eaton President & CEO

512/997-7781 eaton@stellar-micro.com

Background to FPXS

X-ray/UV-C Source for Biohazard Decontamination

- AFRL SBIR, 2004-2007
- combined source target anthrax spores
- background in field emission displays cold cathode arrays
 - arrays over X-ray target reflective X-ray source
 - arrays over phosphor cathodoluminescent UV-C

Flat Panel X-ray Source

- NIST ATP project, 2007 2010
- manufacturing systems and processes
 - materials systems for modules
 - process tools for cathode thin films
 - cathode array fabrication processes
 - driver circuits, on-board HV amplifiers

General Characteristics

- same physics as a tube, change the architecture
- cathode arrays on the exit window
- X-rays up from target, out window
- less heel effect, > 3X power efficiency
- easy to cool anode from back
- can make in various sizes

Side walls

eaton@stellar-micro.com

Span Project

- Three-year project to develop, qualify, approve and deploy SCBI
- Team: Stellarray, Texas A & M sterilization research center, Red Cross, beta test sites
- Main tasks GVHD irradiator deployment:
 - Bench-level irradiator: large panels, lifetime tests, sealed panels
 - Irradiator prototype: full-scale operational, 100 kV operation, then 150 kV
 - Testing & qualification: blood irradiation efficacy, platelet life extension
 - FDA approvals
 - Beta testing at blood banks & hospitals, replacement of ¹³⁷Cs units
- Platelet shelf-life extension study:
 - Current regulations allow platelets to be stored for up to 5 days
 - Wastage rates of platelets can be over 25%
 - Limited shelf-life due to increased bacterial contamination
 - Can ionizing radiation extend platelet shelf-life?
 - Trade-off for dose?: kill/inactivate bacterial pathogens before compromise of blood components

• Dose Comparison Review:

- Prior studies of effects of irradiation on blood mainly 662 keV ¹³⁷Cs gamma rays or ⁶⁰Co
- Limited literature low energy X-ray radiation on blood
- Review comparison of X-rays with gamma rays

- Main use: inactivate leukocytes to prevent TA-GVHD
 - gruesome, usually fatal condition; irradiation indicated in 10% of transfusions in U.S.
 - ionizing irradiation only method approved by FDA
 - standard: 25 Gy dose to mid-plane; at least 15 Gy, no more than 50 Gy
- Blood irradiation at blood banks and hospitals
- 1,350 "self-contained" (isotope) irradiators in U.S. now
 - 650 used for TA-GVHD, another 100 X-ray tube irradiators
 - over 5,000 users of irradiated blood at hospitals, cancer centers, trauma centers
 - most users have to buy irradiated blood
 - 8 Medicare/Medicaid codes for irradiated blood
 - irradiation cost \$55/unit (bag) + transportation
- 23 Mn transfusions in U.S.
 - \$175 Mn/year in irradiation service
 - potential for much more
 - Japan all blood irradiated
- Potential for more irradiators
- Other uses: platelet shelf life extension, implants, other sterilization

Current Irradiators

- Most use ¹³⁷Cs isotope
 - 30 yr half life, lower energy than ⁶⁰Co
 - lead shielding (1 ton)
 - load 1 8 bags in canister, rotate 2 16 min
- ¹³⁷Cs a major security concern
 - National Academy of Sciences report, Feb 2008
 - high security and reporting costs
 - blood banks with truck bomb barriers
- X-ray tube models
 - need high power (160 kV) CT tubes
 - external cooling systems, 220V
 - reliability issues
- Both expensive
- Customers motivated for alternative

Sources Now

- ¹³⁷Cs problems
- So why haven't X-ray tubes taken over?
 - They weren't made for the job
- Point source of radiation
 - single cathode shoots an e-beam into target
 - most energy converted to heat
 - heel effect only fraction of X-ray flux gets out
 - and then, spread the X-ray flux from 1 mm² spot
 - four 400 ml bags = 62,500 mm²
 - need a powerful tube and more powerful cooling system
 - low lifetime

• X-ray tube irradiators use two CT-grade tubes

- expensive
- designed to be pulsed and operated briefly
- not meant for minutes of irradiation
- cooling system, other failures

Plain & Pixilated

• Plain FPXS

- whole cathode array on
- can use hot filament or cold cathode arrays
- large panels or groups of panels
- spread power across entire anode
- cathode current density relatively low
- mainly sterilization
- radiation source & sterilization target areas the same
- panels on both sides provides self shielding

• Pixilated DAXS

- cold cathode arrays
- electronically address small groups to make Xel
- microseconds
- panels replace tube on gantry
- fast imaging
- stationary CT
 - others: GE, Siemens, Philips, Xintek
- formidable current density requirements

SCBI Basic Design

- Bench-top cabinet, FPXS panels (100kV) on either side, mostly self-shielding
- Double lining of 1/16" lead, interlocks
- Entirely self-contained no external cooling; use 110 AC wall socket
- Blood bags pass between panels: conveyor or slide tray
- Redundancy can operate with just one panel up and one down
- Designing panels for 8,000 hours lifetime 250 bags/day for 10 years
- Small footprint: 26 x 24 x 34" in side loading model; weight ~ 100 kg
- Fast dose: four 400 ml bags < 2 min.
- Later add bar code scanners, automatic dosimetry, ISBT 128 output

SCBI - 0

© Stellarray, Inc.

SCBI -1 Operation

• Tray Out and Load

• interlocks prevent X-rays

• Tray In

radiation dose controlled by timer

• Exit Tray Out

• radiation shut off before door opens

Variations

- add conveyor module
- one-sided tray
- front-loading tray

• FDA approval

SCBI Versions

- 1020.40, other FDA compliance
- 510k should to be as close to predicate device as possible
- can't add all features at once
- software validation

• SCBI - 1

- rack mount power supply
- manual operation, timer
- slide tray
- 4,000 hour panels

• SCBI -2

- conveyor module add on
- bar code scanners
- PC or front console operation, ISBT-128 output
- 8,000 hour panels

• SCBI - 3

- optional internal dosimeters
- data feed to Stellarray service
- panels with on board amplifiers

SCBI 1.0

Cold Cathode Arrays

Phosphor Anode

I-V Data

CCRS 13 Single Array Test Summary:

- Each array produced large-area image on phosphor screen
- Collected current ~2mA → 1.2 mA/cm² far exceeded goal of > 0.013 mA/cm²
- >80 lines per array
- Other cold cathodes for 30 A/cm²

Areal Distribution

- X-ray flux concentrated at center of the panel
- Experimentally verified
- Redesigning cathode arrays to emit more current at sides

System/Dose Modeling

		Model 25 Gy					
Inp	ut		Output				
							W-Cu
			50KV	100KV	150KV	200KV	250KV
Power		Physical Constraints	-				
Power	1.2 kW	Collimation Factor	1.00	1.00	1.00	1.00	1.00
Exposure Time	1 min	Area of Target	100	100	100	100	100
Price per kWh	\$0.10	Area of Anode	100	100	100	100	100
Anode		<u>Power</u>					
Width	10 cm	Operating Current	24.00	12.00	8.00	6.00	4.80
Length	10 cm	Quantum Efficiency	0.0082	0.0117	0.0153	0.0190	0.0226
Thickness	6 mm	Anode Current Density	2.40E-04	1.20E-04	8.00E-05	6.00E-05	4.80E-05
Distance to Window	3 cm	Total Energy Required	6	0	0	0	0
		Total Energy in kWh	0.00	0.00	0.00	0.00	0.00
<u>Window</u>		Photons/sec	1.23E+15	8.81E+14	7.65E+14	7.12E+14	6.77E+14
Window Material	Glass						
Thickness	2 mm	Dose Information					
		Dose Rate	6.16	45.85	77.70	109.30	139.72
Irradiation Chamber		Total Dose	6.16	45.85	77.70	109.30	139.72
Length	10 cm	Required Exposure Time	4.06	0.55	0.32	0.23	0.18
Width	10 cm	Electricity Cost per kg	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00

Packaging

Height

MaterialPolystyreneThickness0.5 mm

10 cm

Blood

1.5 cm

10 cm

10 cm

0.025 kGy

1.385 g/cc

Target Substrate

Material Thickness Length Width Desired Dose Density

• Two 10 x 10 cm panels, either side of one bag

- 500 W each panel
- bag the same area as panels

Note importance of matching areas

• too much source area and we waste flux

100 kV, 1 bag Max = 1.25 x 25 Gy = 31.25 Gy 150 kV, 1 bag Max = 1.15 x 25 Gy =28.75 Gy

Calibration and Dosimetry

• Practice now (gamma and X)

- periodic calibration
- dose administered by controlling irradiation timer
- verify irradiation, or (very roughly) dose, with indicator tags

• Calibration of SCBI (development, production)

- alanine tabs
- film

• Calibration of SCBI (periodic in field)

- technician verify with phantom
- film?

• In-line

- also rely on time and tags
- would like more precise tags
- internal dosimetry
 - electronic?
 - ion chamber

Platform Technology

Panoramic Irradiators

- Medical Products, ex factory
 - U.S. market (radiation):
 - ~ \$469 Mn in 2008, \$609 Mn 2013 (GIA)
 - Sutures, staples, syringes, IV, implants
 - 1 25 kGy, penetrate packaging
 - kills bacterial, prion, virus, protozoal
- City block, \$10Mn, <u>centralized</u>
 - Isotopes & e-beam
- Stellarray FPXS systems
 - FPXS panels above & below
 - same dose, quicker, self-shielding, lower energy
 - 5% capital costs, lower operating costs
 - decentralized = MUCH lower inventory costs
- Market demonstrate, sell systems & panels
 - Bench/tabletop systems direct sales
 - Shipping bay/conveyor with integrators

