## Dose distribution in the sample container of an X-ray irradiator used for biological applications\*

R. M. Uribe, D. Mc Farland Kent State University Kishor Mehta IAEA

CIRMS Meeting October 18-20, 2010 \*Work partially supported by the IAEA



# Objectives

- Obtain the dose distribution as a function of the radial distance under static and dynamic conditions for a 150 keV X-ray irradiator using cylindrical containers to irradiate biological samples.
- Compare simulation results with previously obtained experimental values of the dose uniformity ratio (DUR)



### Characteristics of the Irradiator

- Cylindrical X-ray source in the center of the irradiation chamber
- Five cylindrical sample canisters located around the X-ray source, rotating and revolving around it for uniform dose
- Maximum electron energy 150 keV
- Maximum cathode current 45 mA



#### X-ray irradiator



KENT STATE

## Simulation Code characteristics

- MC code used: PENMAIN from Penelope
- Geometry Files to determine:
  - Dose distribution under static conditions
  - Dose distribution under dynamic conditions
- Atomic composition files for all the materials used in the simulations
  - X-ray source
  - Sample
  - Energy detectors
- Input files to steer the MC program and to determine the required quantities
  - Depth-dose distributions
  - Dose uniformity under dynamic conditions



#### Simulation of X-ray source

| body= 1     |  | Z |  | plane X= 0.00E+00 | cm |
|-------------|--|---|--|-------------------|----|
| body= 2     |  |   |  |                   |    |
| body= 3     |  |   |  |                   |    |
| body= 4     |  |   |  |                   |    |
| body= 5     |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   | Y  |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
|             |  |   |  |                   |    |
| 2.83E+00 cm |  |   |  | BODY, MAT = $6$ , | 0  |
| NIT STATE   |  |   |  |                   |    |
|             |  |   |  |                   |    |

VER

# Geometry file to obtain dose distribution in canisters (static)



#### Energy absorbed in sample canister



2D dose distribution (ev/g). Plane I3=1

x (cm)



#### Depth-dose distribution static case



Distance along the diameter of canister (cm)



# Dose distribution (dynamic)

- The sample cylinders are rotating around the Xray source
- The sample cylinders are fixed around their axis of symmetry for an observer outside the irradiation chamber
- Nine energy detectors in the form of concentric cylindrical shells were simulated inside each sample container
- The energy absorbed in each one of the detectors was determined from the simulation



# Geometry file to obtain dose distribution in canisters (dynamic)



#### Dose in each detector

$$D = \frac{E}{m}$$

*E* is the energy deposited in each detector obtained from the simulation in eV/e

*m* is the mass of the cylindrical shell detector  $m = \pi \rho (r_o^2 - r_i^2) l$ 

 $r_o$  and  $r_i$  are the outer and inner radii of the shell; I the length of the cylinder and  $\rho$  the density of water



#### Dose distribution (dynamic)





#### **Experimental results**



Fig. 9. Radial dose/depth distribution with and without rotation



#### Conclusions

#### **Dose Uniformity Ratio (DUR)**

|         | Simulation | Experiment | % Difference |
|---------|------------|------------|--------------|
| Static  | 1.15       | 1.16       | 0.9          |
| Dynamic | 1.06       | 1.08       | 1.9          |

