

Comparison of "whole-body" counting efficiencies for BOMAB and realistic phantoms: VIP-Man, NORMAN, and CNMAN

Binquan Zhang^{1,2}, Matthew Mille¹, X. George Xu¹ ¹Rensselaer Polytechnic Institute, Troy, NY ²China Institute for Radiation Protection

October 6, 2008

Talk based on "An analysis of dependency of counting efficiency on worker anatomy for *in vivo* measurements: whole-body counting" Phys. Med. Biol. 53 (2008) 3463-3475

Introduction

• <u>Accurate</u> measurements of radioactive materials retained in the human body are important for:

Radiation Protection

Nuclear Medicine Imaging

 Most direct measurements for γ-ray emitting nuclides are made by <u>Whole-Body Counting</u>!

What is Whole-Body Counting (WBC)?

• Detectors placed near the surface of the human body for γ-ray spectroscopy.

Efficiency Calibration
(energy, source-detectorDetectorgeometry, counting system)RResponseA

Retained Activity

Efficiency Calibration

- Calibrations are typically performed using physical phantoms spiked with known activity.
- Accuracy depends on the <u>likeness</u> between the physical phantom and the contaminated human subject.
- <u>BO</u>ttle <u>Manikin AB</u>sorption Phantom (BOMAB):

-de facto calibration standard in U.S.
-10 hollow, cylindrical bottles
-polyethylene plastic
-radioactive solutions (H₂0)
-limited size range available

-no bones or internal organs

Objective

• As people come in all shapes and sizes, the purpose of this study is to improve the understanding of how human anatomy effects whole-body counting efficiency.

Method

- Experimental methods would be expensive and time consuming.
- Monte Carlo methods are a practical alternative.

• Virtual WBC simulations performed for 2 BOMAB phantoms and 3 image-based voxel phantoms. The systematic difference in counting efficiency was examined.

4

.....

		P 📢	🔺 🐣	1	
	Ref. BOMAB	CNMAN	NORMAN	VIP-Man	95% BOMAB
Reference	ANSI N13.35	Zhang et al 2007	Dimbylow 1997	Xu et al 2000	ANSI N13.35
Image Type	Math Equations	Photographs	MRI	Photographs	Math Equations
Resolution		$1.7 \text{ x } 1.7 \text{ x } 2 \text{ mm}^3$	$2 \times 2 \times 2 \text{ mm}^3$	$4 x 4 x 4 mm^3$	

Body Height & Weight Data

	Ref. BOMAB	CNMAN	NORMAN	VIP-Man	95% BOMAB
Height	170 cm	170 cm	176 cm	186 cm	184 cm
Weight	68.1 kg	54.5 kg	68.2 kg	103.1 kg	86.6 kg

Methods: Gamma Spectrometer Modeling

- Cylindrical N-type LO-AX HPGe detector from China Institute for Radiation Protection
- Crystal is 70 mm in diameter, 30 mm in length
- Capable of measurements in range of 3 to 2000 keV
- Need reference counting position for comparison

Methods: Monte Carlo Simulation

• Radiation transport simulation used to compare the wholebody counting efficiencies of the 5 phantoms

- Assume homogeneous body contamination scenario with gamma emitting nuclides:
 - ¹⁵⁵Eu, ⁵⁷Co, ¹²⁵Sb, ²²⁶Ra, ¹⁵²Eu, ¹³³Ba, ¹³⁷Cs, ²¹⁰Po, ⁵⁴Mn, ¹⁵⁴Eu, ⁶⁰Co, ⁴⁰K
 - 14 gamma energies considered (105 keV to 1461 keV)
- Pulse Height (F8) tally
- Calculate full energy peak efficiency
- Statistical error < 3% (k=1)

Methods: Water-Filled Phantom Simulations

- Investigation of the effect of tissue homogeneity on efficiency for the three voxel phantoms
- Density and material composition for all organs and tissues (except skin) changed to water
- Similar body shape to original heterogeneous model, but have a simple BOMAB-like internal anatomy

Efficiency Curves for the Five Phantoms

Rensselaer

Normalized Efficiency Curves

(relative to the Reference BOMAB, the de facto standard)

NORMAN vs. Reference BOMAB

- Normalized efficiency factors for NORMAN ranged from 0.99 to 1.04 across energy range studied.
- Agreement attributed to similar heights and weights.

VIP-Man vs. Reference BOMAB

- VIP-Man's efficiencies are 20% to 35% lower than the Ref. BOMAB.
- VIP-Man has greatest height, weight, and body volume.

General Counting Efficiency Trends

- Similar height and weight → similar counting efficiencies.
- Counting efficiencies decrease as body weight and volume increase because of increased photon attenuation.

Results: Water Filled Phantoms

- The efficiencies of the waterfilled VIP-Man, CNMAN, and NORMAN phantoms differed by less than 3% from their respective heterogeneous counterparts (energy range 100 to 1300 keV).
- Statistical error is $\approx 2\%$
- Effect of tissue heterogeneity is negligible compared to height & weight factors described previously

Linear Regressions in Variable (W/H)^{1/2}

Rensselaer

Energy = 105 keV, Similar trends for different energies

• CNMAN's counting efficiency is less than would be expected by the trend line because differences in body proportions.

Rensselaer

- Detectors placed near waist, and CNMAN has noticeably smaller waist.
- Detectors effectively further from the radionuclides.

- Virtual whole-body counting simulations performed on 2 BOMAB and 3 image-based voxel phantoms. Different body shapes results in distinct efficiency curves.
- In general, phantoms have similar WBC efficiencies if height and weight are similar
- If two phantoms have similar heights, but differ in weight, efficiencies might vary about 10% 26% → well within proposed -25% to 50% accuracy range (ANSI 13.30).

Conclusions

- However, height & weight are not sufficient to completely explain WBC efficiency (e.g. CNMAN); they are only convenient ways to characterize the true dependent variable: *body shape*.
- Homogeneous water-filled VIP-Man, NORMAN, & CNMAN had *similar* counting efficiencies to their heterogeneous counterparts.
- Confirms that an appropriately sized, shaped BOMAB phantom may be sufficient for WBC calibrations if the *assumption of homogeneous contamination* is acceptable.

- We hope to continue the whole-body comparisons with additional imaged-based voxel phantoms. Many phantoms have been developed, but few compared.
- Consider non-homogeneous contamination scenarios (e.g. bone-seeking radionuclides).
- Investigate different counting systems.

Acknowledgements

- Dr. Peter Dimbylow of the Health Protection Agency, UK
- Mr. Aiping Ding from Rensselaer
- This project supported in part by:

-U.S. Department of Commerce National Institute of Standards and Technology (70NANB7H6124)

-U.S. Department of Energy Nuclear Engineering Education Research Program (DE-FG07-07ID14770).

References

- [1] American National Standards Institute (ANSI) 1999 Specifications for the Bottle Manikin Absorption Phantom ANSI/HPS N13.35 (New York: ANSI)
- [2] Zhang BQ, Ma JZ, Liu LY and Cheng JP 2007 CNMAN: a Chinese adult male voxel phantom constructed from color photographs of a visible anatomical data set *Radiat. Protect. Dosim.* 124 130–6
- [3] Xu X G, Chao T C and Bozkurt A 2000 VIP-Man: an image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations *Health Phys.* 78 476–86
- [4] Dimbylow P G 1997 FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz *Phys. Med. Biol.* 42 479–90
- [5] Zhang BQ, Ma JZ, Cheng JP, Liu LY and Mao Y 2005 Calculation of the detection efficiency of an HPGe detector in low energy photon measurement with Monte Carlo method *Nucl. Electron. Detection Technol.* 25 274–7 (in Chinese)
- [6] Smith T, Hesp R and Mackenzie J 1979 Total body potassium calibrations for normal and obese subjects in two types of whole body counter *Phys. Med. Biol.* 24 171–5
- [7] American National Standards Institute (ANSI) 1996 Performance Criteria for Radiobioassay ANSI/HPS N13.30 (New York: ANSI)