

Dose Mapping in Industrial Irradiation

F. Stichelbaut IBA

CIRMS Annual Meeting October 23rd 2007

We Protect, Enhance and Save Lives.

Outline

Introduction:

- Dosimetry
- Monte Carlo Radiation Transport Codes
- **Dose Mapping in Gamma Irradiation Vault**
- Dose Mapping in X-ray Irradiation Systems
- Dose Mapping in E-beam Irradiation Systems
 Irradiation of boxes
 Irradiation of fiber spools

Dosimetry

- In industrial irradiation, radiation doses usually range between 1 kGy and 100 kGy.
- This kind of dose can be measured by many types of dosimeter (~15 standard practices found in ASTM).
- **The most commonly used among them:**
 - Radiochromic dyed dosimeters (Far West, Gafchromic);
 - PMMA dyed dosimeters (Red-perspex, Gammachrome);
 - Alanine-EPR dosimeters (pellets, film);
 - Cellulose triacetate (CTA) film dosimeters.
- These dosimeters allow the measurement of absorbed doses at point-like locations or along a line (CTA).

Monte Carlo Simulations

GEANT (Geometry and Tracking)

- Developed at CERN to simulate High-Energy Physics experiments.
- Transport of electrons, photons and protons.
- Computation of total cross sections and generation of final state particles based on physics models.
- Basic treatment of nuclear reactions based on the GEISHA and FLUKA packages
- First version written in 1974, last version 3.21 released in 1994.

MCNPX (Monte Carlo N-Particle eXtended):

- Developed at Los Alamos National Laboratory
- Extension of MCNP4B for accelerator physics
- Transport of all particles (n,e, γ, protons, "heavy ions", pions...)
- Experimental nuclear data up to 20 MeV (150 MeV)
- Possibility to mix nuclear data and models (Mix & Match)
 - Last official version 2.5.0 released in June 2005.

Simplified Gamma Vault Modeling

- Benchmarking exercise in the framework of the Modelling group of the electron/gamma irradiation panel.
- Modelling of simplified gamma irradiation vault using MCNPX.
- Goal: compute dose rates obtained in PMMA dosimeters located in a 3 x 3 x 3 array.
 Compare "Modelling time" and results between different MC codes such as MCNPX, GEANT4, EGS,...
- Dose rates are computed in static configuration where boxes do not move in time.

Dose Rates in Individual Dosimeters

© 2006

MC Study: 2D Dose Mappings (1)

MC Study: 2D Dose Mappings (2)

Design of a High Dose Uniformity X-Ray System for Food Irradiation

MDS Nordion and IBA have developed a new concept for advanced pallet irradiator, called the Palletron TM .
That system is based on a high-energy X-ray source, using 5 to 7 MeV electron beam accelerators.
□ System designed to treat standard pallets (40"x48"x72") without depalletization →
Save packing/unpacking time and efforts
Limit the product handling to a minimum
Preserve pallet integrity during treatment
Improve treatment capacity
Developed for food products with high density (up to 0.8 g/cm ³), this pallet irradiator must achieve a DUR better than 1.5 in all cases.
X-ray properties allow the obtention of very good dose uniformity while preserving a high treatment capacity.

The Palletron[™]: Main Elements

The Palletron[™]: Basic Concept

Cylinder irradiation by X-rays

Irradiation Parameters

- Industrial pallets: 100 x 120 x 180 cm³
- Product density:
 0.1 0.8 g/cm³
- Irradiation parameters:
 - Pallet rotation
 - Speed profile
 - Rotation time
 - Collimator aperture
 - E-beam scanning on target

Irradiation of rectangular footprint

\Rightarrow Non-uniform rotation speed

Monte Carlo Simulations

- PalletronTM development based on Monte Carlo simulation tools:
 - MCNP4 for Nordion
 - GEANT3 and MCNPX for IBA
- □ Generation of X-rays by 5 to 7 MeV electrons impinging on a Ta target.
- Simulate absorption of these photons in the collimators and the product.
- Pallet movement approximated by 2° rotation steps with different weights.
- Checked that GEANT and MCNP give similar results.

Figure 11 Result for the centre slice of 0.8 g cm⁻³ WE product (Max/Min of 1.29). Obtained with full control of the aperture and beam power

Aperture Optimization

Group

Dose Distributions in Horizontal planes

2D dose distributions in top, central and bottom layers of a pallet

Central DUR = 1.3 Global DUR = 1.4

Palletron[™] Validation Tests

Bridgeport Irradiation Center

Bridgeport X-ray Irradiation Cell

5 MeV and 7 MeV X-ray targets / up to 25 mA beam current / 2 meter scanning width

Palletron[™] Validation Tests (2)

 $\rho = 0.57 \text{ g/cm}^3 - 5 \text{ MeV}$

$$\rho=0.76~g/cm^3-7~MeV$$

Palletron[™] Validation Tests (3)

To perform precise 2D dose mapping in horizontal plane, use a fine grid of CTA strips and FWT dosimeters, especially in central layer.

[%]02 20

Study & Validation of Dose Uniformity (1)

$$\rho = 0.76 \text{ g/cm}^3 - T_0 = 5 \text{ MeV}$$

Study & Validation of Dose Uniformity (2)

$$0.76 \text{ g/cm}^3 - 7 \text{ MeV}$$

- The data show a clear asymmetry in the dose distribution.
- This asymmetry can be accurately reproduced by the MC when introducing a shift of 10° between the true position and the expected one.

Data: DUR = $1.50 \oplus 0.11$ MC : DUR = $1.47 \oplus 0.02$ Central plane - $\rho = 0.76 - 7 \text{ MeV}$

Dose Variation Along Axes

 $\rho = 0.76 \text{ g/cm}^3 - T_0 = 5 \text{ MeV}$

E-Beam Benchmarking

- Irradiation of various materials in the Sterigenics facility at Moerdrup during the IQ/OQ validation phase.
- 10 MeV E-beam with w=100 cm
- Phantoms of 60 x 80 x 50 cm³ made of:
 - Polystyrene foam \rightarrow = 0.0125 g/cc
 - Cardboard \rightarrow = 0.1 g/cc
 - Plywood → 0.46 g/cc
- FWT and CTA dosimeters at various depths to measure:
 - Dose-depth curve
 - 2D dose maps at different depths

Use these measurements to benchmark MCNPX and GEANT3 codes.

Dose-Depth Curves

Study of dose vs. depth profile in the center of boxes

2D Dose Mapping in Plywood

2D Dose Mapping in Cardboard

Edge Effects in Cardboard

Study of Spool Irradiation with E-beam

- Study of spool irradiation using 10 MeV E-beam.
- Goals:
 - Understand dose distribution inside product
 - Study the possibility to improve the dose uniformity thanks to a scattering plate above the spools
- MC study based on GEANT3 validated by experimental measurements

Monte Carlo Study

- **Study dose distribution in (Radius, Depth) plane.**
- Poor dose uniformity (DUR~1.7) due to edge effects at large radius.
- The presence of a scattering plate leads to a clear improvement of the dose uniformity (DUR ~ 1.2)

Experimental Validation

Conclusions

- Monte Carlo radiation transport codes are very useful tools to understand the physical distribution of doses inside product, both for simple (boxes) or complex (spool) geometries and complex systems.
- The possibility to display 2D dose maps is especially useful and easy to obtain with MC simulation codes.
- Measuring such 2D dose maps in real life is not so easy but is usually worth the effort to validate new designs in E-beam and X-ray irradiation systems.

Thank you...