Numerical and Experimental Feasibility Study of HDR ¹⁹²Ir Brachytherapy Water Calorimetry

Arman Sarfehnia Jan Seuntjens

McGill Medical Physics Unit October 23, 2007

16th Annual CIRMS Meeting 2007 Gaithersburg, MD

¹⁹²Ir Brachytherapy Dosimetry

^{*}Accredited Dosimetry Calibration Laboratories ⁺Primary Standard Dosimetry Laboratories Interpolation of air kerma calibration of a thimble type chamber based on its KV and ¹³⁷Cs/⁶⁰Co calibration factors.

Cavity ionization chamber with correction for non-validity of Spencer Attix.

Brachytherapy Water Calorimetry

Difficulties:

$$D_{w}(\overline{r}) = c_{w} \cdot \Delta T(\overline{r}) \cdot \prod k_{i}$$

- Sub-mK level temperature rise to be measured with sub-percent precision.
- Correction factors due to:
 - Heat transport (non-water materials & radiation dose gradient)
 - Heat defect (differences in energy absorbed and measured due to chemical reactions in water)
- Sharp dose gradient of the source
- Inherent self-heating of the source
- Accurate positioning of the source

Water Calorimetry

Courtesy of Dr. K. Stewart.

Experimental Setup

Experimental Setup

Experimental Setup

Heat Transport Calculations

Comsol MultiphysicsTM Solves the heat transport equation (the partial differential equation) using the finite element method.

Dose Distribution

The fractional source self-dissipation due to self-attenuation of ¹⁹²Ir photons and electrons in the source was calculated using EGSnrcMP code.

D _{core}	1.79x10⁻⁷ cGy/disintegration
D _{capsule}	1.50x10 ⁻⁸ cGy/disintegration
$S_{K,air}$	3.80x10 ⁻¹¹ cGy.cm ² /disintegration

G. M. Daskalov, E. Loffler, and J. F. Wiliamson, "Monte Carloaided dosimetry of a new high dose-rate brachytherapy source," Med. Phys. 25, 2200 (1998).

Heat Transport Results

Min: 277

Conduction Correction Factor

Measurement vs. Calculation

Summary of Results

Nominal Source activity [Ci]	Source- detector separation [mm]	Irradiation time [s]	Number of calorimetric runs performed	Average dose rate [mGy/(s.Ci)]	TG-43 calculated dose rate [mGy/(s.Ci)]	% diff. exp. & TG-43
9.30	27.6±0.3	36	8	1.79±0.03	1.68	6.5
	26.4±0.4	50	7	1.82±0.03	1.83	0.3
5.05	26.8±0.5	80	3	1.84±0.09	1.83	0.6
	24.7±0.3	75	3	2.02±0.07	2.13	5.0
AVERAGE	25		21	2.05±0.03	2.06	0.5

Conclusion

- > HDR ¹⁹²Ir brachytherapy water calorimetry is feasible.
- Absolute dose measurement with an uncertainty much better than 5% is achievable.

Optimal point of measurement is between 2.5 to 6 cm from the source in the radial direction (on the perpendicular bisector) while ensuring that a minimum dose of 1 Gy is delivered.

Acknowledgements

Dr. K. Stewart
Dr. E. Podgorsak
R. Van Gils
J. Larkin, B. Siva
E. Poon

McGill University Health Centre Research Institute

Nucleotron microSelectron-HDR ¹⁹²Ir

G. M. Daskalov, E. Loffler, and J. F. Wiliamson, "Monte Carlo-aided dosimetry of a new high dose-rate brachytherapy source," Med. Phys. 25, 2200 (1998).

Position Uncertainty

Source Self-Heating

Generic Equation

 $D_{w} = c_{w,constP} g\Delta T g \prod k$

- k_{hd} = correction for the heat defect (chemical rx in water)
- k_{ht} = correction for the heat transfer
- k_p = perturbation correction (non-water materials)
- k_{dd} = profile correction factor (non-uniformity of dose profile)
- k_{ρ} = density correction factor (difference in density between the

calorimeter operation temp and the temp at which another detector, exp. ion chamber, is calibrated