Patient Peripheral Dose Resulting from IGRT Procedures

James M. Galvin, DSc Thomas Jefferson University Hospital Jefferson Medical College Philadelphia, PA

and

The Radiation Therapy Oncology Group

Definition of Image Guided Radiation Therapy

- Process extending from CT-simulation imaging through the step of imaging the patient on the treatment unit
 - Process includes the following steps:
 - Manual or automatic registration of the two datasets
 - Determination of a series of mechanical movements of the patient support system to correct for detected positioning errors

Older Techniques of Verifying Patient Position

- Radiographic Film
- Electronic Portal Imaging Device (EPID)
- Simulation Radiographs
- Virtual Simulation CT Imaging

The Electronic Portal Imaging Device (EPID)

Reason for Increased Peripheral Dose for Radiation Therapy Patients

Intensity Modulated Radiation Therapy (IMRT)
Increased leakage radiation
Increased Planning dose
CT scanning in general
4D CT Planning in particular
Increased Imaging as Part of Daily Treatment
New technologies are easy and helpful to use daily

Radiation Therapy Oncology Group

Increased Treatment Planning Dose

A 4D CT scan is equal to approximately 3 conventional CT studies!

Major Change with IGRT

We are moving from weekly imaging to daily imaging!

Increased Imaging as Part of Daily Treatment

This is our topic for today's talk
Radiation treatments are usually "fractionated"

This trend could change with recent interest in "hypo-fractionated" treatment

IGRT Techniques

- In-room diagnostic quality CT scanner
- MV and kV cone-beam CT attachments
- MV helical CT capabilities
- Stereoscopic 2D images obtained with MV or kV x-rays

Elekta Synergy Cone-beam System

TomoTherapy Hi-Art Unit

G

Varian Cone-Beam CT with Robotic Arms

Varian On-Board Imaging Device

Different IGRT Approaches

 There are many different ways of imaging the patient in the treatment room
MV and kV
Planar, Volume and Helical Scanning

Elekta Cone-Beam CT

G

CB CT

ITC Remote Review Tool

BrainLAB Novalis System with ExacTrac Imaging – dual x-ray tubes and a-Si panels create orthogonal images

Jefferson RTOG Radiation Therapy Oncology Group

	CHILDREN S		- Links	III MARCON		A RANK
				1 Carrow	-	ANT AND
	123			NO.A		
				SS.P		SHE .
					Sec. 2	100
						100
					1.1	Sad 140 3
						Contraction of the
	1 Contraction		-			and the second
				1 Laure		1.2 4 10
			ब	Q 🕘		Star Politica Chernetta
Overlay M	lode	Shift		Fusion	Fu	sion Limit
X-Ray	@ Add	Vertical 0.0	0 0.00 °	Automatic		[
	Amber/Blue	Longitudinal 0.0	0 0.00 °	Manual	RO	Junio
DRR	C Spyglass	Lateral 0.0	0 0.00 °	Reset		Define Hide
3	Please fuse the in	ages and check the	e result.	[Bony	Implants
6-7	ОТ			1		
Jefferso	n Radiatio	n Therapy				16th Annual CIRM

Radiation Therapy Oncology Group

S – Oct 07

						PA BOA	
	and the						
	ALC: N	ALC: NOT	CHARLES AND			a serie	
	Ser.	A. Cat		145		Sec.	
					m. 2	Sharah	
				1994		ALC PROVE	
					1.12	The and	
	Sec. 18		R. Billion		Time (ma	1.1.1	
				h land	24	1	
35			a	a 🕛			
Overlay	Mode	Shift		Fusion	Fus	sion Limit	12
X-Ray	C Amber/Blue	Vertical 0.00	0.00	Cancel			
	Subtract	Longitudinal 0.00	0.00		RO	North In	
DRR	C Spyglass	Lateral 0.00	0.00 °			Define Hide	
3	Please fuse the im	ages and check the re	sult.		Bony	Implants	100
	ПТ						
Jeffers	ON Radiatio	n Therapy			1	6th Annual CIRN	IS ·

Radiation Therapy Oncology Group

- Oct 07

	and the second			
1 alles	Sec. 14	the same	AN TA NO	
1			READER THE	
10. IS				
			1 miles	
	Star Bar			
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
and the second second				
Overlay Mode		Eusion	Fusion Limit	
X-Ray Add	Vertical 0.00 0.0	Cancel]	
Subtrac	Longitudinal 0.00 0.0		ROI	
DRR I C Spyglas	ss Lateral 0.00 0.0		B Define Hide	
Please fuse t	he images and check the result.		Bony	
fferson R	TOG		16th Appual CIPA	
Radia Onco	tion Therapy logy Group			

	1 and			JUNE
			S Correspond	150
				1 2 23
		<u>व</u>		
	Overlay Mode	Shift	Fusion	Fusion Limit
	X-Ray Add	Vertical 0.00 0.00 °	Cancel	50mm
	Subtract	Longitudinal 0.00 0.00 °		ROI
	DRR C Spyglass	Lateral 0.00 0.00 °		Define Hide
	Please fuse the image	ages and check the result.	Bony	Implants
Jef	ferson Radiation	DG Therapy Group		16th Annual CIRMS

- Oct 07

Unregistered TypenCam 2			
Overlay Mode		Fusion	
small C Add	Vertical -0.61 0.16	Automatic	
C Amber/Blue	1	- Hannal	50mm
C Subtract	Longitudinal a.15 0.51	Manuar	ROI
large 🛄 🧟 Spyglass	Lateral 8.03 1.32	• Reset	Hide
Please fuse the in	ages and check the result.	Bony	r Implants
Jefferson Radiation	DG Therapy Group		16th Annual CIRM

2

TomoTherapy
"checkerboard"
fusion review

2007 AAPM Annual Meeting Minneapolis, MN

Concern About Peripheral Dose

There is plenty of evidence to show the advantages of using CT for planning; there is equally evidence to demonstrate that portal images are essential to sustain accurate coverage of the target and avoid critical structures. So these extra-target doses are an essential part of the whole process of accurate delivery of the prescribed dose. However, this is not to say that any amount of extra-target dose can be given.

E. G. A. Aird - British Journal of Radiology (2004) 77, 983-985

Concern About Peripheral Dose

The 17-year-old female having "involved field irradiation" for Hodgkin's lymphoma is not in the same category as the 70-year-old male treated for prostate cancer.

E. G. A. Aird - British Journal of Radiology (2004) 77, 983-985

Useful Publications

- Martin J. Murphy, et al The management of imaging dose during image-guided radiotherapy - Report of the AAPM Task Group 75 *Medical Physics* 34, 4041-4063, 2007
- Mohammad K. Islam, et al Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy *Medical Physics* 33, 1573-1582, 2006

Other Contributions to Peripheral Dose

Leakage Radiation

- ► 0.2% or less
- \blacktriangleright IMRT decreases efficiency so that leakage goes up by x3
- Thus, 60 Gy target dose gives about 360 mGy leakage dose
- Scatter Dose and Dose from Non-coplanar Fields
 - Near target volume receiving 60 Gy, scatter can be 300-3000 mGy (10 to 1 cm away)
- Single planning CT study
 - ▶30-50 mGy
- Standard portal imaging

EPID 10-50 mGy per image

Peripheral Dose from IGRT CT Dose Index (CTDI)

Elekta Cone-Beam CT

Mean dose at center	Head/Torso		2/34 mGy
TomoTherapy Helical MV CT			
Depends on pitch,	Head/Torso		25/18 mGy
slice thickness			
Varian Cone-Beam CT			
Depends on bow-tie filter,	Head/Torso		83/42 mGy
degrees of rotation, grid?			
Siemens MV Cone-Beam CT			
MV cone-beam		50-150	mGy

Peripheral Dose from IGRT CT Dose Index (CTDI)

Elekta Stereoscopic kV Imaging

Dose about a factor of ten less than cone-beam with same unit

Peripheral Dose from IGRT

Lee-Cheng Peng, et al J Appl Clin Med Phys Vol 8 No 1(2007)

9 MU cone-beam

4 MU orthogs

Probability of Inducing a Fatal Cancer

ICRP coefficient for estimating the probability of inducing a fatal cancer from a single radiographic exposure is 5x10⁻⁵ per mSv of effective dose

Probability of Inducing a Fatal Cancer

- Consider a prostate treatment that uses CT for planning followed by 30 daily portal image pairs at 2 MU each.
- For the CT part of the procedure, the Effective Dose has been estimated at 8.2 mSv
- For the portal imaging part of the procedure, the Effective Dose is estimated as 1.3 mSv
- The total Effective Dose is 8.2 + 30x1.3 = 47.2 mSv
- Thus, using the equation from the previous slide, there is an estimated probability of 0.2% for radiation-induced cancer in the patient's lifetime.

Probability of Inducing a Fatal Cancer

- Consider a thirty-year-old female being treated for cervical cancer. If this patient undergoes 30 complete daily in-room CTs for targeting and compensation of organ deformation, she receives an estimated Effective Dose of 246 mSv.
- This situation gives a 1.2% probability of a radiationinduced cancer.

Dose Reduction Strategies for Cone-Beam CT

- Minimize the longitudinal field of view
- Reduce number of projections and/or the mAs settings per projection
- Use a lower kV
- Scan with partial rotation

Islam, et al

Breast Cone-Beam – Courtesy of Di Yan PhD Beaumont Hospital

CB CT

Start/stop Ang: 180/300 # projections: 435 Proj/total mAs: 0.25/109 0.5/217 XVI Insert: 520 Max dose (cGy): 0.7/1.3

Start/stop Ang: 80/-180 # projections: 470 Proj/total mAs: 0.8/376 XVI Insert: 520 Max dose (cGy): 2.3

Helical CT

Dose Reduction Strategies for IGRT

- Configure the image acquisition systems to eliminate dose outside the required fields of view
- Plan the imaging technique to be consistent with the image quality and information needed for the treatment decision being made

Murphy, et al

Dose Reduction Strategies for IGRT – The NKI Technique

- Use the first week of treatment to define systematic errors with daily imaging
- Correct and image weekly thereafter

