CT Dose Measurements

THE UNIVERSITY OF TEXAS MDANDERSON CANCER CENTER

Making Cancer History[™]

Dianna Cody, Ph.D. Professor U.T. M.D. Anderson Cancer Center

Number of CT exams increasing very rapidly...

How many know someone who had a CT scan in the last year?

2007 NCRP

- US population collective effective dose
 - 1980, 0.54 mSv/person
 - 2006, 3.2 mSv/person
- Increase attributed to medical sources
- CT: 12% procedures, 45% eff. dose
- Nuc Med: 3% procedures, 23% eff. dose
- Substantial clinical benefits!

Abdomen/Pelvis CT protocol: 120kV, 280-300 mA, 1 sec/rotation, pitch = 1, image thickness = 5 mm

 How does the radiation dose from this study compare to the radiation dose from a chest x-ray? a. CT <u>~</u> chest x-ray

b. CT ~ 10 chest x-rays

d. CT between 100-250 chest x-rays

e. CT ~ 500 chest x-rays

Abdomen/Pelvis CT protocol: 120kV, 280-300 mA, 1 sec/rotation, pitch = 1, image thickness = 5 mm

 How does the radiation dose from this study compare to the radiation dose from a chest x-ray? a. CT <u>~</u> chest x-ray

b. CT ~ 10 chest x-rays

- c. CT between 10-100 chest x-rays
- d. CT between 100-250 chest x-rays *****

e. CT ~ 500 chest x-rays

Abdomen/Pelvis CT protocol: 120kV, 280-300 mA, 1 sec/rotation, pitch = 1, image thickness = 5 mm Radiologists' answers

 How does the a. CT ~ chest x-ray radiation dose from b. CT ~ 10 chest x-rays 56% this study compare c. CT between 10-100 to the radiation chest x-rays dose from a chest x-ray?

15% d. CT between 100-250 chest x-rays *** 13% e. CT ~ 500 chest x-rays 10%

5%

Lee CI, et.al., Radiology 2004; 231:393-398

Radiation Dose - General Definitions

- Exposure Ability of x-rays to ionize air;
 - Roentgen (R) is the unit of exposure
 - how much is present,
 - Not how much is *absorbed*.

MEASURED quantity

Radiation Dose - General Definitions

- Absorbed Radiation Dose
 - energy absorbed/unit mass at a point.
- Measured in rads (English) or Gray (SI).
 - 1 rad = 100 ergs/gram; 1 Gy = 1 J/kg
 - 1 rad = 10 mGy; 1 Gy = 100 rads.
- Absorbed Dose
 - How much is absorbed,

ESTIMATE for individual patients

- Not *where* that dose is absorbed
- NOR what the *risk* is to those tissues being irradiated

Effective Dose

- $E = \Sigma_T (w_T * w_R * D_{T,R})$
- w_T = tissue weighting factor (next page)
- w_R= radiation weighting coefficient (1 for xray)
- D_{T,R}= average absorbed dose to tissue T
- Units are: SI Sieverts (Sv); English rem
- 1 rem = 10 mSv; 1 Sv = 100 rem

ESTIMATE for individual patients

Effective Dose

•	Tissue	Tissue weighting factor	(WT) Proposed WT
•	Gonads	0.20	Ť (.08) Ť
•	Red Bone Marrow	0.12	.12
•	Colon	0.12	.12
•	Lung	0.12	.12
•	Stomach	0.12	.12
•	Bladder	0.05	.04
•	Breast	0.05	(.12)
•	Liver	0.05	.04
•	Esophagus	0.05	.04
•	Thyroid	0.05	.04
•	Skin	0.01	.01
•	Bone Surface	0.01	.01
•	Brain	(Remainder)	.01
•	Salivary Glands	(Remainder)	_01
•	Remainder (Adrena	als, etc.)0.05	(.12)

CT - Specific definitions

- What is unique about CT?
 - Geometry and usage
 - Exposure is at multiple points around patient
 - Typically thin (0.5 40 mm) beam width
 - Multiple Scans (Series of Scans)

CT-Specific definitions

- Machine Specific
 - CTDI defined, how to measure
 - CTDI_w- weighted
- Exam Specific
 - $CTDI_{vol}$
 - DLP
 - Effective Dose

NO Patient Specific Dose Descriptors

TOMOGRAPHIC EXPOSURE (multiple tube positions)

CT Dose Distributions

• D(z) = dose profile along z-axis from a single acquisition

Measure w/film or TLDs

Ζ

D(z)

CT Dose Index (CTDI) How to get area under single scan dose profile?

- Using a pencil ion chamber
- One measurement of a transverse scan
- Typically made in phantom

CT Dose Index (CTDI)

CT Dose Index (CTDI)

- CTDI Represents
 - Average dose along the z direction
 - At a given **point** (x,y) in the scan plane
 - Over the central scan of a series of scans
 - When the series consists of a <u>large number of</u> <u>scans</u>

CTDI Phantoms

- Body (32 cm diam), Head (16 cm diam)
- Holes in center and at 1 cm below surface

CTDI₁₀₀ (rad or Gray) Measurement is made w/100 mm chamber: CTDI₁₀₀ = (1/NT) J^{5cm}-5cm D(z) dz = (f*C*E*L)/(NT)

f = conversion factor from exposure to dose in air, use 0.87 rad/R

C = calibration factor for electrometer (typical = 1.0, 2.0 for some)

E = measured value of exposure in R

- L = active length of pencil ion chamber (typical= 100 mm, 160 mm for some)
- N = number of *active* data channels used during one transverse scan
- T = channel width (active detector surface)

[Note: NT = total x-ray beam width]

CTDI₁₀₀ (rad or Gray) CTDI₁₀₀ Measurements are done:

- In Both Head and Body Phantoms
- Using ONLY TRANSVERSE scan techniques
 (CTDI = Area under the single scan dose profile)
- At isocenter and at least one peripheral position in each phantom

- CTDIw is a weighted average of center and peripheral CTDI₁₀₀ to arrive at a single descriptor
- $CTDI_w = (1/3)CTDI_{100,center} + (2/3)CTDI_{100,peripheral}$

Intended to reflect dose gradient

CTDI _{vol} (Gray) -EXAM-related

- Exam parameters such as beam width, spacing between slices (transverse) or table speed (helical)
- CTDI_{vol} = CTDI_w *NT/I
- where N= number of active data channels, T= data channel width
 I = spacing or table feed/rotation for helical

Note: NT = total x-ray beam width Also pitch= I/NT, so $CTDI_{vol} = CTDI_w/pitch$

Definition:

Pitch = <u>distance table travels during one rotation</u> total x-ray beam width

Dose Length Product (mGy·cm)

- Accounts for extent of scan
- Nose to toes, or very limited study?
- DLP = [CTDIvol (mGy)] x [Scan extent (cm)]

Dose information display

Add Group	Spli Curre Grou	t Di ent Sel ip Gi	elete lected roup	Biopsy Rx	Smart Prep Rx	Previe	W Opti Nec	imize of :ded	Gating	Prior	Next						
Images	Scan Type	Start Location	End Location	No. of Images	Thick Speed	Interval (mm)	Gantry Tilt	SFOV	kV	mA	Total Exposure Time	Prep Group (sec)	ISD (sec)	Breath Hold (sec)	Breathe Time (sec)	Voice Lights Timer	Cine Duration (sec)
1-20	Helical Full 0.8 sec.	150.00	138.03	20	0.63 1.25 HQ	0.63	\$10.0	Large	120	200	8.6	1.0	1.3	N	N	N	2.0
21-31	Helical Full 0.8 sec.	\$21.25	\$46.25	11	2.5 7.5 HQ	2.50	\$10.0	Large	120	200	4.1	1.0	1.3	N	N	N	2.0
32-42	Helical Full 0.8 sec.	\$96.25	\$146.25	11	5.0 15.0 HS	5.00	\$10.0	Large	120	200	3.8	1.0	1.3	N	N	N	2.0

Effective Dose (mSv)

 Accounts for RISK to sensitive tissues 	Region	k- factor		
 Table of weighting 	Head	0.0023		
factors Ectimate by using	Neck	0.0054		
k-factor approach	Chest	0.017		
 Units mSv/mGy·cm 	Abdomen	0.015		
Eff. Dose = DLP · k	Pelvis	0.019		

European Guidelines on Quality, EUR 16262 EN, May 1999

Estimating Effective Dose

- To estimate effective dose, you need to ESTIMATE DOSE TO EACH RADIOSENSITIVE ORGAN !!! $(E = \Sigma_T w_T^* D_{T,R}); w_R = 1$
- Difficult to do accurately -
 - How do you know how much a specific organ (e.g. the kidney) received from a specific exam? In a specific patient?

Estimating Effective Dose

- Computer Software CTDOSE and WinDose
 - Based on Monte Carlo simulations
 - ImPACT calculator
- Factors based on DLP
 - E = DLP * k (k in mSv/(mGy*cm))
 - k= .0023 for head exams , k =0.015 for abdomen

"Typical" CT Effective Dose Values

- Background radiation ~ 3.60mSv/year
- Typical effective doses
 - Head 1 to 2 mSv
 - Chest 5 to 7 mSv
 - Abd 5 to 7 mSv
 - Pelvis 3 to 4 mSv
 - Abd/Pelv 8 to 11 mSv

Typical scan ~ 1 - 2 x avg annual background

Limitations of CTDI approach

- Underestimates dose by ~15% (Boone, 2007)
- Inappropriate for:
 - Cone beam CT
 - C-arm CT
 - Dental 3D-CT

Limitations of Effective Dose

- C.J. Martin, British J Radiology, 2007
- Examined uncertainties is estimated effective dose values
- Effective dose uncertainty for medical exposures <u>+</u> 40% in reference patient
- Estimated cancer risk a factor of three higher or lower for reference patient
- Recommends use of organ dose estimates when assessing dose to individual subject

Emerging methodology...

- 3 Tier system for dose measurement:
 - Simple in air site measurement (R)
 - Point dose measurement in suitable phantom
 - Application of standard size Monte-Carlo voxelized 'patient' models

