

CIRMS 2007

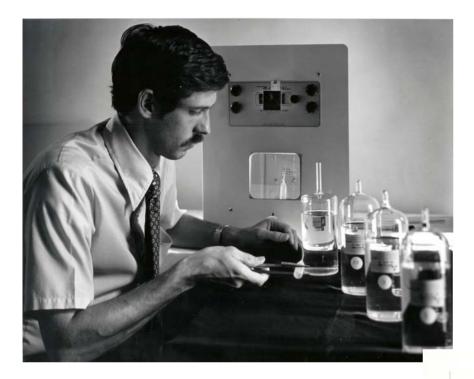
Thanks

Robin Hutchinson Wilfrid Mann **Dale Hoppes Randy Caswell** Walter Bambynek (EC) Lura Powell Curt Reimann **Ray Kammer** Katharine Gebbie

Parney Albright George Ryan, Jr.

Career Phase I

- Army nuclear power program 1969 1971
- Environmental nuclear plant radiochemistry 1972 1978
- Liquid scintillation counting 1975 1987
- Nuclear medicine 1981 1992



液体闪烁计数 在放射性核素 计量学中的应用

国际计量局

Ⅲ 高效率液体闪烁计数系统的设计

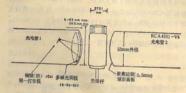
B.M.Courser and W.B.Mann*

III.1. 引 盲

28

为了比较不同设计的液体闪烁计数系统,首先我们必须 涉及到本领域中常用的一些优值,在设计中,最常用的优 值是 n(58 Swa, 64 Birl),它是在闪烁体中吸收1 keV 的 能量到达第一打象极的光电子数。为了比较起见,一般 7.6 kr,6 cm 磷化的 Nal(T) 探 测 器 n的为6 个光电子/ keV,面对于单个光电倍增管液体闪烁系 拢随 着设计的不 同, n在 0.2-2 个光电子/keV 之间,本 文第二部分并我们 将考虑最佳选择 n的方法,最后将对放射性核素计量学中使 用的液体闪烁系统给出评论.

111.2. 比较液体闪烁计数系统的方法


对于很多仪器厂前来说,必不可少的是有一个共同的基 础评价不同计数系统的灵敏度,大多数商品计数系统如图1 所示的安排由两个光电倍增管一个螺旋帽瓶组成,经常用来 比较这些系统的一个指标是双 管符 合中 所 调无终灭密封标 准¹日 的计数效率 c^(*1), 这些标准 (80 ANS) 通常含有 15 ml 去氧液体因烁体,

and the second se

* 美国国家标准局放射性家, Washington, D.C.20224, USA.

它由 ³H-甲苯, PPO 和溶在甲苯中的 POPOP 组成*.

在最近六个商品仅器的比对申,Patterson等(78 Pat) 发现"日效率e(3日)在42%到57%之间。这些值是大振箱 为低一些。因为使用的是空气饱和样品、如果使用无猝灭标 准,厂商通常声明得到的"日效率e(*日)在(60-65)%之 间。

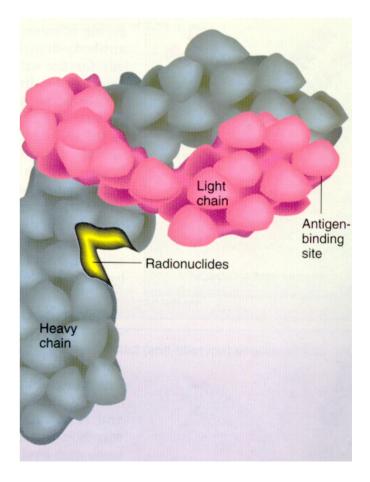
图 II-1 與型的商品液体闪烁计数管使用的标准 计数照和光电倍增管结构图

一 麵的尺寸是類形象工委员会 (IEC) 标准 suz(77 IEC) 中给出的,对 不同性质的商品质 (以及所 前 "小 臣") 約 符 份,可在 (15 Pen, 78 Nes, 78 Rin) 等文獻中得到,

在脑品计数系统中 也使 用其 它类 电倍 增管其中包括 EMIQB 9635 和 Philips 56 DUVP.

利用"日 计数效率作为灵敏度的唯一标准是有一些问题的,特别是对于放射性核素计量学对计数系统规定一个优值 可更具有信息价值。«(*H)和 n。之间的关系表示在图 II-2

*本文中遇到的闪烁体的化学会式列在表 I-2中。


NIST Standard Reference Materials (SRMs) for Radionuclides Used in Nuclear Medicine and Biology

Radionuclide	SRM	Last Issued	Radionuclide	SRM	Last Issued
	ID			ID	
Chromium-51	4400N	July 1992	Xenon-133	4415Y	March 2001
Iodine-131	401AA	January 2001	Gallium-67	4416V	April 2001
Tin-113-indium-113m	4402C	October 1980	Indium-111	4417U	August 2001
Strontium-85	4403B	April 1977	Mercury-203	4418A	November 1976
Thallium-201	4404S	June 2001	Ytterbium-169	4419C	October 1986
Gold-198	4405B	August 1978	Lead-203	4420B	November 1984
Phosphorus-32	4406O	October 1997	Gold-195	4421A	December 1979
Iodine-125	4407Z	October 2001	Chlorine-36	4422A	April 1980
Cobalt-57	4408F	July 1995	Strontium-90	4423A	November 1985
Selenium-75	4409D	August 1981	Sulfur-35	4424A	October 1988
Technetium-99m	410AA	September 2001	Samarium-153	4425G	July 2001
Iron-59	4411B	January 1979	Strontium-89	4426A	April 1995
Molybdenum-99	4412Z	February 2001	Yttrium-90	4427E	December 2001
Mercury-197	4413A	May 1976	Gadolinium-153	4428A	October 1998
Iodine-123	4414C	June 1980			

Radiopharmaceutical Therapy

NIST radioactivity standards for radiolabelled, tumor-specific monoclonal antibodies

⁹⁰Y Zevalin
¹³¹I Bexxar
¹⁶⁶Ho
¹⁷⁷Lu
¹⁸⁸Re
²¹¹At

Career Phase 2

Malcolm Baldrige National Quality Award 1987 – 1988
Radiation Physics/Medical Physics 1988 – 1996
Brachytherapy standards 1997 - 2000

2002

Malcolm Baldrige National Quality Award

The Baldrige Criteria: From Interest to Action

Standards for Prostate Seed Therapy

Two radionuclides: ¹⁰³Pd ($t_{1/2} = 17$ days) ¹²⁵I ($t_{1/2} = 59$ days)

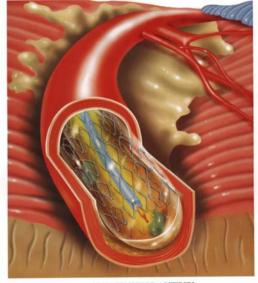
198,000 New prostate cancer patients per year in U.S.

80-120 Seeds per patient

Effective therapy

.... requires traceability to a NIST primary standard for seed strength

Intravascular Radiation to Prevent Restenosis


FDA Approved in 2000

- Cordis ¹⁹²Ir seed train
- Novoste ⁹⁰Sr seed train

Submitted to FDA

- Guidant ³²P wire
- Radiance ³²P hot-wall balloon

RADIATION-TEMPERED ARTERIES

March 13, 2001 **THE DOCTOR'S WORLD; The New Treatment Cheney Did Not Get** LAWRENCE K. ALTMAN, M.D. The New York Times

"Dr. Jonathan S. Reiner, Vice Pres. Dick Cheney's cardiologist, finds himself at center of debate among some in medical field over his decision to clear blocked coronary artery and then not to use new radiation technique to help prevent another blockage...."

Career Phase 3

Validation of USPS mail irradiation 2001 -2002
Standards for radiological/nuclear detectors 2002 - 2005
Standards for Homeland Security 2003 - 2007

11TH ANNUAL MEETING COUNCIL ON IONIZING RADIATION MEASUREMENTS AND STANDARDS

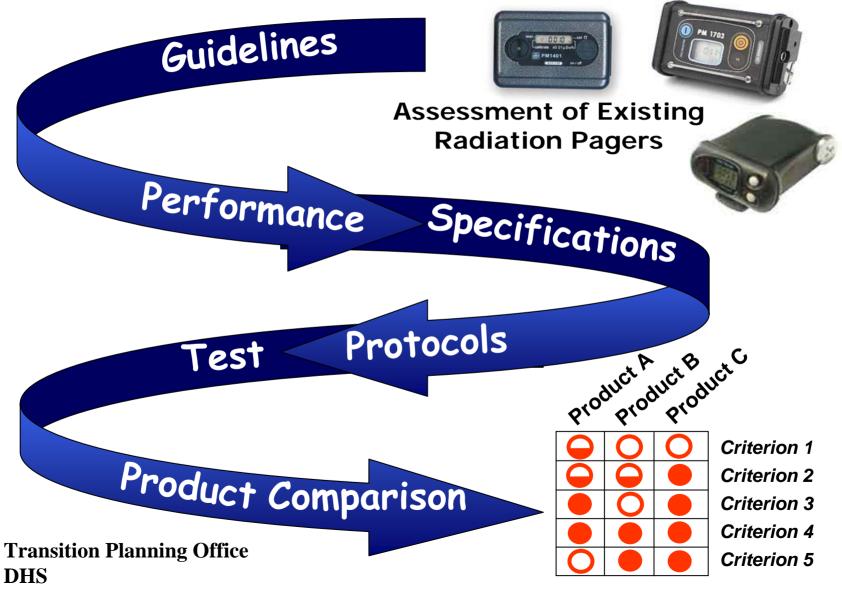
CALL FOR PAPERS

CIRMS 2002

Traceability for Radiation Measurements and Standards OCTOBER 21-23, 2002

National Institute of Standards and Technology Technology Administration U.S. Department of Commerce

AEA Technology Amersham Health **Best Medical International** Bristol-Myers Squibb Medical Imaging Bruker BioSpin Guidant **ICN Worldwide Dosimetry Service** International Specialty Products **IBA - Ion Beam Applications** K & S Associates Landauer **MDS Nordion** MGP Instruments Nucletron **Radiance Medical Systems** Saint-Gobain Crystals & Detectors Theragenics American Association of Physicists in Medicine American College of Radiology **ARC Seibersdorf Research** FDA Center for Devices & **Radiological Health** Georgia Tech Neely Nuclear **Research Center Illinois Department of Nuclear Safety** Kent State University Los Alamos National Laboratory National Institute of Standards & Technology National Physical Laboratory, UK Pacific Northwest National Laboratory Physikalisch-Technische Bundesanstalt **University of Notre Dame Radiation** Laboratory **US Army Primary Standards Laboratory US Department of Energy US Nuclear Regulatory Commission**


Sessions on RDD & Nuclear: Standards and Measurements for 1st Responders

Federal State Local emergency planners

Standards organizations Manufacturers Testing laboratories

http://www.cirms.org

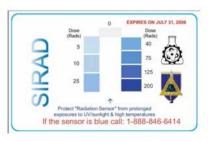
Process to Develop User Guidance on Existing Technologies

Radiation Detection Equipment for Detect/Prevent (Top Line) and Respond/Recover (Bottom Line)

Radiation Portal Monitors

Radiation Pagers

Radioisotope Identifiers



Survey Meters

Electronic Personnel Dosimeters

Radiochromic Passive Dosimeters

FROM TECHNOLOGY ... TRUST

Thanks!

NIST Ionizing Radiation Division

DHS Office of Standards

CIRMS Participants 1992 - 2007

