Proposed Trifurcation of the ASTM F792 Checkpoint Standard: the Quality Assurance and Human Perception Test Objects/Test Methods

Ronald E. Tosh, PhD
National Institute of Standards and Technology
Physical Measurement Laboratory
Radiation Physics Division
Dosimetry Group

CIRMS Conference 2015
NIST, 101/LR
April 28, 2015
Outline

• Evolution of F792 and rationale for proposed trifurcation
 • F792-RTO (Routine Test Object – quality assurance)
 • F792-HP (Human Perception – test evaluation by trained inspectors)
 • F792-OE (Objective Evaluation – automated test evaluation, see later)

• F792-RTO

• F792-HP
History of Security X-Ray Systems

• Security x-ray systems emerged in late 1960s in response to armed hijackings to Cuba

• By the late 1970s security x-ray systems had evolved into digital devices using either linescan or flying spot technology

• At behest of FAA, ASTM F12.60 was established at that time to develop standards for security x-ray systems and metal detectors

Slide courtesy of Fred Roder (SRA, Intl; TSL)
First X-Ray Image Quality Test Standard (FAA, circa 1972)

• 24 AWG solid copper wire on cardboard

• Rationale: 20 AWG used in (commercial) detonators

• Test: can any of the wire be seen?

Slide courtesy of Fred Roder (SRA, Intl; TSL)
Second X-Ray Image Quality Test Standard
(Original ASTM F792 – early ‘80s)

Product was F792 aluminum step wedge with various gauge sinusoidal wires, a design developed by John Battema, Marketing VP for Scanray (later renamed Astrophysics) [Fred Roder (SRA, Intl; TSL)]
Current X-Ray Image Quality Test Standard (ASTM F792 – 01)

- Dual-energy linescan and backscatter x-ray came later, following the Air India bombing in 1985
- F792 expanded to its current form to address dual-energy and other performance measures in 1988
Current Image Quality Testing

- Currently on market
- *Erroneously* listed as: Security Stepwedge ASTM F 792-88
- Widely used for daily QA

- Mixture of threat-based components, basic IQIs, NDT
- Reflects SoA *ca* 2001
Migration Path ...
"F792-88"

~1.6 mm steps

F792-RTO

4.0 mm steps
“F792 requires a complete rethink!” – Prof Dudley Creagh, Univ of Canberra
Tests 1,2 – wire detection and useful penetration
Test 2 – useful penetration cont’d

Which alloy to use ...
Test 2 – useful penetration cont’d

Which alloy to use ... the cheaper ASTM-6061 grade will do.
-HP revision status ...
Test 3 – spatial resolution

Round wire segments produce “soft” edges
-HP revision status ...
Test 4 – simple penetration

Outstanding questions:

1. **Step-thickness range** – upper right are two suggestions for expanding thickness range.
2. **Type of marker** - numeric, band, shape; choice of orientation.
3. **Material of marker** – Pb or steel (*n.b.* Pb has been used traditionally, but steel might be more relevant for Test 4, as copper is for Test 1).
4. **Placement of markers** – consider placing markers on each side of each step (as in the middle case), to evaluate the effect of build-up when barrier material is between: a) source and marker, and b) marker and detector.
-HP revision status ...
Tests 5, 6 – contrast sensitivity
Tests 5, 6 – contrast sensitivity
-HP revision status ...
Tests 8,9 – (useful) materials discrimination
Are different material types distinguishable at low and high attenuation?

At extremes of attenuation, machines may have difficulty making color assignments (right) or may not present color assignments in a way that permits human inspectors to readily distinguish orange from green from blue (left, along red dashed lines).

Are color boundaries stable from low-to-high attenuation?

Changes of color in some of the step wedges shown to the left indicate instabilities in color mapping algorithms at high attenuation.

*Credit to Dudley Creagh (Univ. of Canberra) for both examples of imaging pathologies (n.b. the lower example was obtained from a cargo screening system).
Tests 8,9 – materials discrimination

- to vary attenuation and Z_{eff} along orthogonal transverse axes.

High Z_{eff} material (e.g. steel)

Low Z_{eff} material (e.g. HDPE)
-HP revision status ...
-HP revision proposal ...
F792-revision vision...

Acknowledgments

-RTO
Nick Paulter (NIST)

-HP
Fred Roder (SRA, Intl; TSL)
Jack Glover (NIST)
Dudley Creagh (U Canberra)

-OE
Jack Glover (NIST)
Larry Hudson (NIST)