Objective measures of image quality and F792-OE

Dr. Jack L. Glover
Theiss Research
National Institute of Standards and Technology (NIST)
Checkpoint x-ray screening

• Image quality standard ASTM F792-08
• Currently under revision and may be split into 3
• One sub-working group is developing an Objectively Evaluated (OE) standard
• General trend toward objectively-evaluated image quality standards
Measuring x-ray image quality

Thin organic detection

Spatial resolution

Penetration
Objective standards

• Create a common language of image quality
• Easy comparison of specifications
• Objective standards are evaluated by an algorithm, rather than a human
• Recent trend towards objective standards
 – CT image quality standard (N42.45-2011)
 – Portable x-ray systems for bomb squads (ANSI N42.45-2013)
 – Checkpoint standard? (proposed ASTM F792-OE)

XRS-4

• 370 KVP
• Penetrates 1.5" Steel
• Weighs 22 Pounds with battery
• DeWalt® 18V Battery pack
• One hour DeWalt® Battery Charger
Objective vs subjective image quality

Subjective test (i.e. judged by a person)
Objective vs subjective image quality

Subjective test (i.e. judged by a person)
Objective vs subjective image quality

Subjective test (i.e. judged by a person)

Objective test (i.e. judged by an algorithm)

ASTM F792

20 AWG visible under 9 mm steel (ASTM F792-OE 2015)

3mm steel

6mm

9mm

ASTM F792-OE algorithm

Image Data

ROI Selection

Statistical significance test

Radon transform

Results
CT screening of checked luggage

- Image quality standard: ANSI N42.45
- Objectively evaluated image quality metrics
- Has proved extremely useful for TSA/TSL and manufacturers
ASTM F792-OE prototype
Proposed F792-OE metrics

<table>
<thead>
<tr>
<th>Test name</th>
<th>What is meant to be measured</th>
<th>Object on test pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1: Steel Penetration</td>
<td>thickest step that can be discerned from adjacent steps</td>
<td>stainless steel step wedge</td>
</tr>
<tr>
<td>Test 2: Organic Contrast Sensitivity</td>
<td>contrast between thin organic objects</td>
<td>polyoxymethylene (POM), e.g. Delrin™ step</td>
</tr>
<tr>
<td>Test 3: Resolution</td>
<td>spatial resolution in the two lateral dimensions</td>
<td>lead foil</td>
</tr>
<tr>
<td>Test 4: Dynamic Range</td>
<td>how much useful information the system is capable of storing in a pixel</td>
<td>stainless steel step wedge</td>
</tr>
<tr>
<td>Test 5: Noise</td>
<td>quantifies the frequency-dependent noise</td>
<td>with no test object present</td>
</tr>
<tr>
<td>Test 6: Useful Penetration</td>
<td>wire visibility through different thicknesses of steel</td>
<td>wires of different diameters behind steel step wedge</td>
</tr>
</tbody>
</table>
Proposed F792-OE metrics

Useful penetration

Steel penetration

Noise

Spatial resolution

Dynamic range

Organic detection
Spatial resolution

Extremely important aspect of image quality

Definition: the ability of a system to resolve, as separate, closely spaced small objects.

NOT the smallest object that can be seen

NOT wholly determined by number of pixels or pixel size
Spatial resolution in F792-OE

- Measured using a widely-used method called the slanted-edge MTF method
- Result in line-pairs per millimeter
Dynamic Range

- Widely used concept in signal processing
- Dynamic range = \(\frac{\text{Largest signal}}{\text{Smallest increment}} \)

Smallest usable increment = Standard deviation here
Largest signal = Pixel value here
Organic detection

Boundary Signal to Noise Ratio (BSNR)

Computed using multiple images in different orientations

\[S_i = 1 - \frac{\text{thin step}_i}{\text{thick step}_i} \]

\[BSNR = \frac{\bar{S}}{\sigma_S} \]
Steel Penetration

- Uses a steel step wedge
- Measures BSNR at every boundary
- Boundary = visible if, BSNR > 5
- What is the thickest step with both boundaries visible?
Useful penetration

- Ability of a system to image wires under blocking material
- Concept exists in human-judged version of F792

- Objective evaluation = a challenge
$R(\rho, \theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x \cos \theta + y \sin \theta - \rho) \, dx \, dy$

The Radon Transform
Useful penetration

ASTM F792-OE algorithm

20 AWG visible under 9 mm steel (ASTM F792-OE 2015)
ASTM F792-OE results

- Suite of image quality metrics
- Performance monitoring
- Comparison of systems

<table>
<thead>
<tr>
<th>Image Quality Metric</th>
<th>Vendor A</th>
<th>Vendor B</th>
<th>Vendor C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1: Steel penetration</td>
<td>24 mm</td>
<td>15 mm</td>
<td>18 mm</td>
</tr>
<tr>
<td>Test 2: Organic Contrast</td>
<td>22.9</td>
<td>4.9</td>
<td>2.8</td>
</tr>
<tr>
<td>Sensitivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 3: Spatial Resolution</td>
<td>x-axis: 0.56 lp/mm
y-axis: 0.76 lp/mm</td>
<td>x-axis: 0.41 lp/mm
y-axis: 0.53 lp/mm</td>
<td>x-axis: 0.48 lp/mm
y-axis: 0.54 lp/mm</td>
</tr>
<tr>
<td>Test 4: Dynamic Range</td>
<td>229</td>
<td>72</td>
<td>204</td>
</tr>
<tr>
<td>Test 5: Noise</td>
<td>x-axis: 468²
y-axis: 492²</td>
<td>x-axis: 474²
y-axis: 363²</td>
<td>x-axis: 151²
y-axis: 178²</td>
</tr>
<tr>
<td>Test 6: Useful penetration</td>
<td>20 AWG: 9 mm
24 AWG: 6 mm
30 AWG: 6 mm</td>
<td>20 AWG: 6 mm
24 AWG: 3 mm
30 AWG: 0 mm</td>
<td>20 AWG: 3 mm
24 AWG: 0 mm
30 AWG: -</td>
</tr>
</tbody>
</table>
Conclusions

• There is a trend toward objectively evaluated image quality metrics
• Standard objective methods for measuring image quality make results more reliable and useful
• An objectively evaluated image quality standard has been developed by the ASTM F792-OE sub-working group