

Traceability for activity measurements in Nuclear Forensics

John Keightley

Senior Research Scientist : Radioactivity Group

National Physical Laboratory, United Kingdom

CIRMS Meeting : NIST 22 - 25 October 2012

NPL Management Ltd - Internal

Outline

- Background to traceability in radioactivity measurements, in particular regarding primary standards from NMIs.
- Example: (work in progress)
 - ²⁴³Am standardisation
- Urban Vitrified Composite material

NPL Radioactivity Group

- NPL is the UK's National Metrology Institute (NMI)
- Maintain and develop UK Standards of Radioactivity
- 20 physicists, chemists and technicians

Specialists in:

- High accuracy radioactivity standards
- Rare, high purity, radionuclides
- Reference materials
- Nuclear spectrometry
- Radiochemistry

• For:

- Nuclear industry
- Nuclear medicine
- Defence
- Homeland Security and Nuclear Forensics

Mutual Recognition Arrangement

MUTUAL RECOGNITION

Scheme for Key Comparisons

- National metrology institute (NMI) participating in CIPM key comparisons
- NMI participating in CIPM key comparisons and in regional metrology organization (RMO) key comparisons
- O NMI participating in RMO key comparisons
- NMI participating in ongoing BIPM key comparisons
- NMI participating in a bilateral key comparison
- 🛛 International organization signatory to the MRA

Many other comparisons

²⁴³Am Standardisation

- WHY IS IT NEEDED ?
 - Yield tracer for radiochemical processes
 - α-spectrometry
 - Mass spectrometry
 - Chronometery
 - ²⁴³Am (²³⁹Np) ²³⁹Pu
 - Measurement of $^{241}Pu ^{241}Am$
- Fingerprinting
 - Isotopic composition of americium

- ²⁴³Am is the longest lived of Americium isotopes.
- Produced in the nuclear cycle by multiple neutron capture events on ²³⁹Pu and ²³⁸U. Not found in nature.
- On behalf of the US Reference Material Program, NIST (in collaboration with NPL) is seeking to prepare units of highly characterised ²⁴³Am solutions.at 2 different activity concentrations.

²⁴³Am

- Aim: high accuracy, high purity, ²⁴³Am in solution
- Accuracy (Bq): 0.4 0.8%, (k = 2)
- Accuracy (mass): 0.75 1.10%, (k = 2)

Purification

- Removal of thorium, uranium, neptunium, plutonium anion exchange in $7.2M \text{ HNO}_3$
- Additional purification step to remove iron, zirconium, polonium and residual uranium, neptunium and plutonium
- No attempt to remove curium and higher actinides

²⁴³Am starting material

- Obtained by NPL in 1993 from Russian Federal Nuclear Facility : Azarmas-16)
 - ²⁴³Am 99.9985 %
 - ²⁴¹Am 0.00148 (± 0.00014) %
 - ^{242m}Am 0.000054 (± 0.00008) %
 - ^{243/244}Cm 0.0000034 (± 0.000005)%
 - Uncertainties (k = 1), including components for activity to mass conversion

Ingrowth of ²³⁹Np and ²³⁹Pu

²⁴³Am : Measurement Strategy

NATIONAL Physical Laboratory

Use a combination of various counters to monitor the efficiencies for various gamma transitions to determine absolute activity concentration:

 $4\pi (\alpha+\beta)(LSC)-\gamma$ coincidence counting $4\pi (\alpha+\beta)(HPPC)-\gamma$ coincidence counting $4\pi \alpha(APPC)-\gamma$ coincidence counting

Combination of γ gates

α -spectrometry

Compare with ²⁴¹Am ²⁴¹Am standardised by similar techniques to high precision (approx 0.1% k =1)

Efficiencies: $\epsilon_{\beta} = N_{c}/N_{\gamma}$

 $\varepsilon_{\beta} = N_{c}/N_{\gamma}$ $\varepsilon_{\gamma} = N_{c}/N_{\beta}$

Activity:
$$N_o = \frac{N_\beta N_\gamma}{N_c}$$

Efficiency Extrapolation

$$\frac{N_{\beta} N_{\gamma}}{N_{c}} = No \left[1 + f \left(\frac{1 - \varepsilon_{\beta}}{\varepsilon \beta} \right) \right]$$

 $(1-\epsilon_\beta)/\epsilon_\beta$

for multiple beta branches:

$$\begin{split} N_{\beta} &= N_0 \sum_{r} a_r \left[\varepsilon_{\beta_r} + \left(1 - \varepsilon_{\beta_r}\right) \left[\left(\frac{1}{1 + \alpha_r}\right) \varepsilon_{\beta\gamma_r} + \left(\frac{\alpha_r}{1 + \alpha_r}\right) \varepsilon_{\beta c e_r} \right] \right] \\ N_{\gamma} &= N_0 \sum_{r} a_r \left[\left(\frac{1}{1 + \alpha_r}\right) \varepsilon_{\gamma_r} \right] \\ N_c &= N_0 \sum_{r} a_r \left[\left(\frac{1}{1 + \alpha_r}\right) \varepsilon_{\beta_r} \varepsilon_{\gamma_r} \right] \end{split}$$

(High Pressure Proportional Counter - P10 gas - 5 bar)

On alpha plateau, γ gate on 75 keV

$$\begin{split} N_{HPPC} &= N_0 \mathcal{E}_{\alpha} \\ N_{\gamma(75keV)} &= N_0 \Big[\mathcal{E}_{\gamma(75keV)} + a \mathcal{E}_{\gamma(106keV_Np239)} \Big] \\ N_c &= N_0 \mathcal{E}_{\alpha} \mathcal{E}_{\gamma(75keV)} \end{split}$$

thus : bias in efficiency extrapolation:

$$\frac{N_c}{N_{\gamma(75keV)}} = \mathcal{E}_{\alpha} \left[\frac{1}{1 + a\mathcal{E}_{\gamma(106keV_Np239)}} \right]$$

On $\alpha+\beta$ **plateau**, use multiple gates

$$N_{\gamma(75keV)} = N_0 \left[\varepsilon_{\gamma(75keV)} + a\varepsilon_{\gamma(106keV_Np239)} \right]$$

$$N_{c(75keV)} = N_0 \left[\varepsilon_{\alpha} \varepsilon_{\gamma(75keV)} + \varepsilon_{\beta} a \varepsilon_{\gamma(106keV_Np239)} \right]$$

$$\frac{N_{c(75keV)}}{N_{\gamma(75keV)}} = E_1$$

 $N_{\gamma(228,277\,keV)} = N_0 \varepsilon_{\gamma(228,277\,keV)}$

 $N_{c(228,277\,keV)} = N_0 \varepsilon_\beta \varepsilon_{\gamma(228,277\,keV)}$

 $\frac{N_{c(228,277\,keV)}}{N_{\gamma(228,277\,keV)}} = \mathcal{E}_{\beta} = E_{2}$

$$N_{HPPC} = N_0 \left[2 - k_1 \left(1 - E_1 \right) - k_2 \left(1 - E_2 \right) \right]$$

4π(LS)- γ coincidence counting

Using two opposing PMTs, facing LS vial, and operating in coincidence as the "beta" channel.

Comparison with ²⁴¹Am standard

- α Spec
- ²⁴³Am/²⁴¹Am readily resolved
- Expected to yield the ^a lowest measurement ^a uncertainty

Maintaining traceability

- Samples which are traceable to the ²⁴³Am stock solution will be sent to the BIPM (Sevres, France) for assessment on the SIR.
- A pure solution of ²³⁹Np will also be linked to the SIR.
- New measurements of nuclear data will be reported.
- New calibrations will be derived on NPL's secondary standard equipment :
 - Ionisation chambers
 - Gamma spectrometers
- Propose to compare with NIST SRM 4332D/E ?

Fresh, post Improvised Nuclear Device (IND) reference material

- Identified as a need at CIRMS workshop in 2009
 - Existing nuclear test debris is all over 20 years old
 - Above ground test material is all over 45 years old
 - Weathered
 - Matrix is rock: >300m deep, stable geology

Urban Vitrified Composite matrix (UVC)

- Aim: to develop a material that mimics debris from detonation of an "improvised nuclear device" in a town.
- Approach chosen:
 - Controlled spiking of materials
 - Based on oxide fusion to generate a 'glass'
 - Includes fission yield monitor

UVC Scope

Phase 1:

- Production of 2.5 kg of blank UVC Matrix across 100 samples.
- Fused aluminosilicate
- Phase 2:
 - UVC matrix doped with ²³⁵U (enough for 10¹³ fissions after brief irradiation)
 - i.e: 250s in a thermal neutron flux of 5×10¹³ n/cm²/s
 - 22x10⁻⁶g ²³⁵U/g =1.8 Bq/g

Bulk matrix			Fused alumosilicate - contains >10% each of Aluminium, Silicon, Calcium, Fluorine and Oxygen				
Urban matrix 'impurity' elements (target values)							
Element	ppm		Element	ppm	Element	ppm	
Si	186000		СІ	37	Nb	55	
AI	7900		Sr	130	Ni	450	
Fe	230000		Cr	850	Sn	36	
Са	220000		Zn	47	Та	25	
Mg	4800		F	260	V	150	
S	3700		As	14	Zr	15	
Na	700		В	3	N	2	
к	1900		С	470	U	100	
Ti	550		Со	37	W	10	
Р	200		Cu	220	Th	10	
Mn	1200		Мо	190	0	660000	

Additions to the UVC project team NPL

- Simon Jerome (NPL)
 - Pioneer of the project, with Ken Inn (NIST)
 - Simon has been very unwell and absent for several months. Expected back in 2013.
 - Replaced by:
- Professor Kym Jarvis (Imperial College, London)
 - Head of Environmental Research Centre's ICP unit, research interests include trace metal analysis, ICP-MS
- Professor Susan Parry, (Imperial College, London)
 - Professor of Radiochemistry, consultant to the IAEA, QA auditor, research interests include neutron activation analysis
- George Ham (UK Health Protection Agency)
 - Until recent retirement was in charge of the radioanalytical laboratory at HPA Chilton. 40 years experience in low-level radio analytical chemistry.

