Future Needs for Standards in ^{90}Y Microsphere Therapy

CIRMS 2012
Reed Selwyn, PhD, DABR
24 October 2012
Objectives

I. General Description
 – Microsphere Distribution
 – Product Comparison

II. Dosimetry Models
 – Shortcomings

III. Uncertainty Analysis
 – Y90 Assay
 – Activity Injected
 – NIST Standards and Needs
Liver Cancer

• Two types of liver cancer
 – Hepatocellular Carcinoma (HCC) = Primary
 • 28,720 new cases estimated for 2012 (ACS)
 • Resectable → curative
 – Hepatic Metastasis = Secondary
 • Colorectal – 150,000 cases estimated for 2006
 • Others
 • Nonresectable → palliative

• Microspheres approved for HCC and colorectal liver metastasis
I. General Description

• How does the treatment work?
 – 90Y-loaded microspheres
 – Insoluble device
 • 15 – 40 μm diameter
 • 90Y β emitter ($t_{1/2} = 64$ h)
 – $E_{\text{max}} = 2.28$ MeV
 – $E_{\text{ave}} = 0.93$ MeV
 – $X_{90} = 5.3$ mm
 – Injected via the femoral artery to the hepatic artery by the IR
 – Spheres preferentially deposit in tumors
Liver Blood Flow

- Normal supply
 - Hepatic artery \rightarrow 20%
 - From celiac trunk
 - Oxygenated
 - Portal vein \rightarrow 80%
 - From GI tract
 - Venous blood - branches

- Tumor supply
 - Hepatic artery \rightarrow 80%
 - Portal vein \rightarrow 20%
Patient Injection & Delivery Box
Microscopic Distribution

- Non-uniform sphere dist.
 - Spheres cluster
 - 1 – 20 spheres/cluster
 - Cluster extent of 0.5 – 1 mm
 - Tumor periphery
 - Surface = 175 spheres/mm3
 - Core = 2.7 spheres/mm3
 - Nontumorous tissue
 - 3.5 spheres/mm3

- Tumor to Normal Ratio (T:N)
 - Range from 1:1 to 200:1
In Vivo Assessment of Distribution

- **99Tc-labeled Macroaggregated Albumin (MAA) scan**
 - Particle Size: 10 – 100 um
 - Degradeable
 - Particle size < 10 um
 - Inaccurate flow analysis
 - % Lung Shunt
 - Prescan
- **CT Scan**
Product Comparison

<table>
<thead>
<tr>
<th></th>
<th>Therasphere® (MDS, Nordion)</th>
<th>SIR-Spheres® (SIRTex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>15-35 um</td>
<td>20-40 um</td>
</tr>
<tr>
<td>Material</td>
<td>Glass (3.2 g/cc)</td>
<td>Resin (1.6 g/cc)</td>
</tr>
<tr>
<td>Specific Activity</td>
<td>2500 Bq/sphere</td>
<td>50 Bq/sphere</td>
</tr>
<tr>
<td># of spheres injected</td>
<td>1.2 – 20 million</td>
<td>20 – 60 million</td>
</tr>
</tbody>
</table>
II. Dose Estimation Models

- Intraoperative beta dosimetry
 - Direct measurement
 - Beta probe swept over liver surface
 - Determine mean count rate (cps)
 - Determine mean activity
 - Assume homogeneous sphere distribution
 - Calculate liver dose
 - Invasive
 - Difficult application to metastatic cancer
Dose Estimation Models Cont’d

• MIRD Formalism
 – Assumptions:
 • Homogeneous distribution in source (liver)
 – No distinction between normal liver and tumor
 • No dose to non-source organs
 – $\Phi = 0$ for target for beta emitting source
 – Overestimates dose to normal liver
 – Underestimates dose to tumor
Dose Estimation Models Cont’d

• Partition Model
 – Determine tumor-to-normal tissue ratio (T:N)

\[
T : N = \left(\frac{A_t}{M_t} \right) / \left(\frac{A_i}{M_i} \right)
\]

\[
D_{\text{liver}} = \frac{50 \text{Gy-kg}}{\text{GBq}} \frac{A_{\text{inj}} (1 - F_{\text{lung}})}{(T : N)M_t + M_l}
\]

• Evaluate compartment activity and mass
 – Based on 99mTc-MAA prescan

• Still assumes no dose to normal tissue from tumors

– Application to metastatic cancer
 • Difficult to determine tumor mass and uptake fraction
Determination of Tumor Mass
T:N Ratio
III. Microsphere Assay

<table>
<thead>
<tr>
<th></th>
<th>Therasphere®</th>
<th>SIR-Spheres®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vial Geometry</td>
<td>0.3 ml glass v-vial in</td>
<td>5 ml glass vial</td>
</tr>
<tr>
<td></td>
<td>acrylic shield</td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>3, 5, 7, 10, 15 or 20</td>
<td>3 GBq ± 10%</td>
</tr>
<tr>
<td></td>
<td>GBq ± 10%</td>
<td></td>
</tr>
</tbody>
</table>

- **Activity Standard**
 - Therasphere activity is traceable to NIST
 - SIR-Sphere activity is not traceable to NIST
 - Apparent activity is 25% greater than indicated

- **Transfer standard to local clinic**
SOURCE PREPARATION FOR CALIBRATION OF YTTRIUM-90

Bulk Material from Supplier
Yttrium-90 as YCl₃ in 0.5 N HCl

Dilute to 5 mL with 1 N HCl

1 mL V-Vial
0.05 mL soln
CRC 12 : 48 x 10

V-Vial in Hand Shield
0.05 mL soln
CRC 12 : 43 x 10

3 mL Syringe
1.1 mL soln
CRC 12 : 60 x 10

5 mL Syringe
1.2 mL soln
CRC 12 : 57 x 10

10 mL Serum Vial
5 mL soln
CRC 12 : 38 x 10

NIST Standard Ampoule
5 mL soln
CRC 12 : 48 x 10

British Standard Ampoule
3 mL soln

20 mL Serum Vial
10 mL soln
CRC 12 : 22 x 10

Gravimetric dilution 1:100

LS Vials
Cerenkov Vials
NaI(Tl) Samples
Y-90 Measurements at NIST

- Liquid scintillation - destructive
 - CIEMAT/NIST
 - Triple-to-Double coincidence method

- Therasphere calibration
 - Calibration for v-vial and v-vial in dose shield in 3 and 20 GBq activities
 - LS of Y90 standard to determine correct dial setting
 - Measure microspheres with dial settings in CRC-12
 - 6 mm change in height = 1% increase in signal
Assay Uncertainty: SIR-Spheres

- Proper Dose Calibrator Setting
 - Reference dose used to determine setting
 - Example: Setting variation was ± 18%

- Additional sources of uncertainty
 - Withdraw administered activity
 - Volume reduction → geometry variation
 - Changes in efficiency for a 0.2 ml sample compared to a 2 ml sample

- Activity in the syringe prior to treatment
Need 1

• Low uncertainty NIST traceable transfer standard for the vendor-specific injection geometry
 – Y90 positron emission calibration
 • Reduces geometry dependence
 • Chamber or source calibration (ADCL)
 – Sr90 calibration
 • Long-lived sample for routine calibration checks
Y90 Positron Emission

• Y90 emits a positron 31.86 ppm
 – Measured using a single high-purity germanium (HPGe) detector
 – More recently measured using a coincidence system (Paxton, UW-Madison)
 • HPGe and NaI
 • High SNR and reduced measurement time
 – 511 keV photon relatively insensitive to geometry differences, unlike beta measurements
Activity Injected

• Microspheres cluster
 – Lodge in 3-way valve, needle, and catheter
 – How much residual activity is trapped?
 • Equipment placed in Capintec
 • Or use radiac to measure dose rate
 – Residual activity in syringe

• Overall Uncertainty > 20%
 – Assumes manufacturer calibration is accurate
Need 2

- NIST traceable post-injection assay of residual activity and trapped activity