A Full Cup

Kenneth G.W. Inn

Caswell Award

Division Chief
Sabbatical
NBS NML
ORM
CIRMS
MPDs

Previous Awardees

- 2002 H. Thompson Heaton, II, FDA
- 2004 Anthony J. Berejka, Ionicorp
- 2006 Kenneth L. Swinth, Swinth Associates
- 2007 Bert M. Coursey, DHS
- 2008 Larry A. DeWerd, U Wisconsin
- 2009 Marshall R. Cleland, IBA Industrial, Inc
- 2010 Geoffrey S. Ibbott, UT MD Anderson Cancer Center

Acknowledgements

Low-level Radiochemistry Project Colleagues

Radioactivity Group Leaders

NIST [NBS]

National and International Colleagues

Interns

CIRMS Family

Dad, Mom, Estelle, Rachel, Jarrett, Juan, Maka Koa

Radionuclide Metrology Infrastructure Workshops

- Environmental cleanup, occupational safety, ocean studies, food safety, nuclear forensics, radionuclide speciation, waste management, emergency response, measurement traceability testing
- Need metrology tools for:
 - o Method <u>development/validation</u>
 - Quantitative measurement <u>confidence</u> for decision making
 - o Measurement comparison over time/distance
 - o <u>Independent</u> verification of measurement capability

Agenda

Natural Matrix Radionuclide SRM

CIRMS MPDs

Traceability to NIST for Reference, Monitoring & Service Laboratories

Emergency Radiological Response Metrology

Sorption of Radioactive Elements in Contaminated Soils, Sediments and Urban Materials

Improvements for In-vivo and In-vitro Radiobioassay

Atom-counting Measurement Techniques for Environmental and Radiobioassay

(Nuclear Forensics)

Natural Matrix Radionuclide SRMs

Standards for Environmental Radioactivity

Sources

- Reprocessing
- · Fallout
- Sewage Remediation
- Catastrophes
- . D and D
- · Spills
 - Ocean Dumpsites

Radionuclides

90Sr. 1291, 137Cs.

Rn, Pu, etc.

Exchangeables
 Organics

Molecular Species

(designated by line color)

- Carbonates
- Silicates
- Oxides

SRMs

- Completed
- Under Development
- O Planned

<u>Matrix</u>	Radionuclides	10-Yr Requirements
Soil: High Ca Low Ca	90Sr, 137Cs, 210Pb, Alpha Emitters	5,000 Aliquants (1 kg Samples)
Sediments: High Ca Low Ca Mill Tailings	Alpha- & Beta-Particle Photon Emitters	1,600 Aliquants (100 g Samples)
Water:	3H, 60Co, 90Sr, 106Ru, 134Cs, 137Cs, Natural Radionuclides, Alpha-Particle Emitters	Several 1000 Aliquants (50-100 mL Samples)
Biological: Lung Liver Bone Milk Sea Clam Sea Hare Seaweed	3H, 14C, Fission & Activation Products, Alpha-Particle Emitters	Several 100 Aliquants
Air: Filters	Natural Radionuclides	8

Natural Matrix SRMs

for Environmental Radioactivity Measurement

- Rocky Flat Soil I
- River Sediment
- · Peruvian Soil
- Human Lung
- Human Liver
- Lake Sediment
- Ocean Sediment
- Bone Ash
- Shell Fish

Lessons Learned

- Critically evaluated measurement results necessary to certify NMM SRMs
- Well <u>characterized</u> heterogeneous materials can be certified
- While a lab may <u>excel</u> in one measurement, may perform poorly in another
- Excellence from careful <u>craftsmanship</u>
 & vigilance, not only instrumentation

Traceability to NIST for Reference, Monitoring & Service Laboratories

Emergency Radiological Response Metrology

Figure 1—Conceptual diagram of the national performance testing program

Lessons Learned

- <u>Distribution</u> of capabilities;
 - <u>− x</u> ~ NIST
 - $-1s \sim 10\%$

Labs get better with <u>practice</u>

NRIP Emergency Preparedness Exercises (8 hour turnaround)

Lessons Learned

- Laboratories <u>modified SOPs</u> well to go faster
- Need <u>realistic</u> uncertainty estimates
- Laboratories can <u>respond</u> in 8 hours
- Traceable exercise samples are critical for study evaluation
- Report the Exercise evaluations to labs <u>ASAP</u>
- Lab <u>management issues</u> revealed, <u>corrective action</u> needed
- SRNL <u>capability</u> for rapid analysis of Fukushima samples

Sorption of Radioactive Elements in Contaminated Soils, Sediments and Urban Materials

Optimized NIST Protocol Established

Nuclear Forensics Application being Evaluated

New NMM SRMs certified for radionuclide extraction

Potential Application for D&D

Lessons Learned

 Developed <u>robust</u> reference sequential extraction method

 Zr containing trace acid resistant minerals contains about 15% of U/Th

 Resistates found in all 4 natural matrix SRMs from widely different collection sites – i.e. quantitative U/Th measurements must use total dissolution methods

Improvements for In-Vivo and In-Vitro Radiobioassay

 Radioiodine traceability testing of RESL

Whole-body counting of phantoms & volunteers

MCNP calibrations & R/D [RPI]

Atom-counting Measurement Techniques for Environmental and Radiobioassay

Complements Radioassay

Food Safety
Population Screening
Occupational Safety
Geoscience
Ocean Studies
Cosmology
Nuclear Forensics

Evaluated AMS MDA Marshall Island Resettlement D&D Occupational Safety

QC and PT RMs for Emergency Population Screening

Ultra-Low ²³⁹Pu in Peruvian Soil

SRMs/CRMs Needed to Combat Nuclear Threats

Daubert v. Merrell Dow Pharmaceuticals [113 S. Ct. 2786 (1993)]

- HAS THE TECHNIQUE BEEN <u>VALIDATED</u>?
- WERE THE CONDITIONS <u>CONTROLLING</u> THE TECHNIQUE'S OPERATION MAINTAINED?
- WERE THE RESULTS PEER <u>REVIEWED</u>?
- DOES, AND AT WHAT <u>FREQUENCY</u>, THE METHOD LEAD TO ANY <u>ERRONEOUS</u> RESULTS? (FALSE POSITIVES AND/OR NEGATIVES)
- HAS THE TECHNIQUE BEEN GENERALLY <u>ACCEPTED</u> IN THE SCIENTIFIC COMMUNITY?

Blessed with a Full Cup

Making a Difference

Natural Matrix Radionuclide SRM

CIRMS MPDs

Traceability to NIST for Reference, Monitoring & Service Laboratories

Emergency Radiological Response Metrology

Sorption of Radioactive Elements in Contaminated Soils, Sediments and Urban Materials

Improvements for In-vivo and In-vitro Radiobioassay

Atom-counting Measurement Techniques for Environmental and Radiobioassay

Challenges: radionuclide speciation, nuclear waste Management, Nuclear Power D&D, Nuclear Forensics Traceability, High Quality Mass Spectrometry

26

Thank you