

Quantitative Imaging and Dosimetry in Targeted Radionuclide Therapy

Yuni K Dewaraja Department of Radiology University of Michigan

Council on Ionizing Radiation Measurements and Standards (CIRMS), April 12, 2022

Disclosures

- Grant support from NIBIB R01EB022075, NCI 1R01CA240706
- Grant support from Varian
- Software support from MIM Software, Inc
- Software support from Siemens Molecular Imaging
- Consultant for MIM Software, Inc.

Patient Specific Dosimetry in Radionuclide Therapy

- Pre-treatment imaging-based dosimetry
 - For planning therapy to improve efficacy)
 - Often using a surrogate. e.g. <u>Y-90 DOSISPHERE Trial</u> (France)
- During treatment imaging-based dosimetry
 - After each cycle to adapt subsequent cycles
 e.g. Lu-177 DOTATATE ILUMINET Trial (Sweden)
- Post-treatment imaging-based dosimetry
 - Documentation, Verification, Intervention
 - e.g.<u>Y90 SIRT + SBRT Trial</u> (Univ of Michigan)
 - Establish dose vs. effect for future treatment planning

Targeted Radionuclide Therapy Planning

• <u>Current</u> approach:

- Fixed activity ("one dose fits all") or weight-based adjustment
 - Convenient, but variability in pharmacokinetics & anatomy not considered
 - Potential for under-treatment or over-treatment

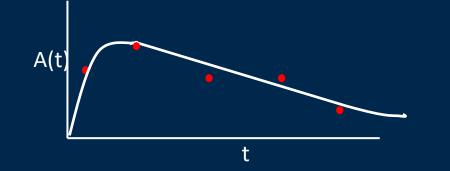
• <u>Desired</u>

- Absorbed dose guided treatment planning
 - 1) Adjust activity to keep absorbed dose to critical organ < MTD
 - Few ongoing trials/clinical studies
 - 2) Adjust to deliver therapeutic absorbed dose to lesion at acceptable toxicity to normal organs
 - Currently, limited to research

Radionuclide Therapy Dosimetry: Main Steps

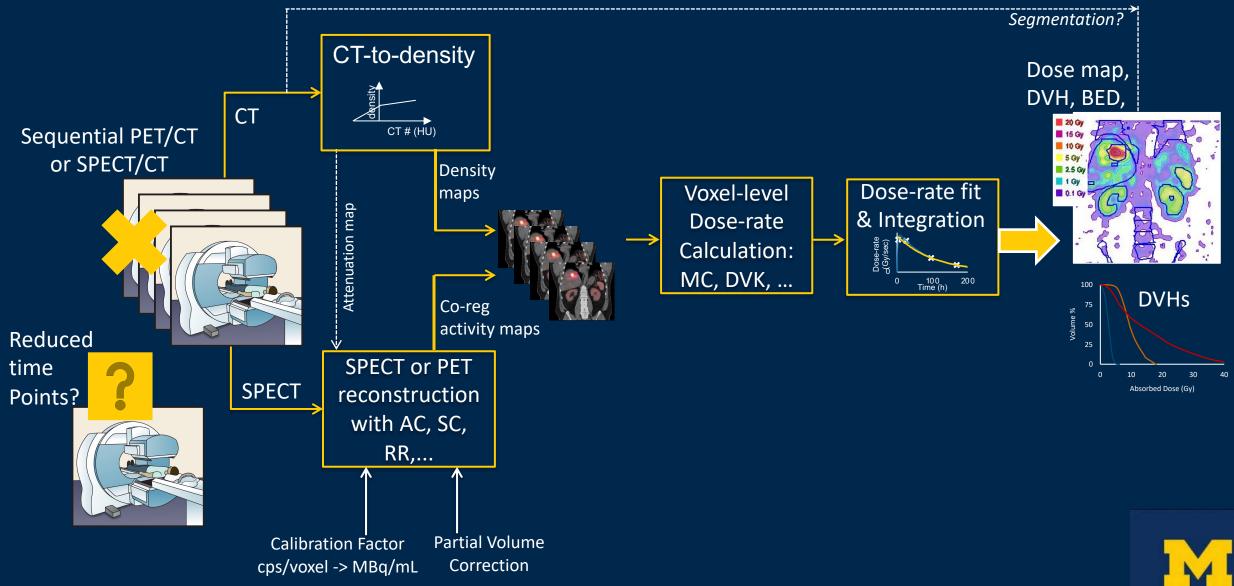
Image Acquisition

- Planar, Hybrid Planar/SPECT, SPECT, PET
- Typically, multi time point. Simplify by single time point methods
- Image Reconstruction
- Quantification
 - Camera Calibration/Sensitivity. Partial Volume Correction. PET vs. SPECT.
- Volume-of-interest Segmentation
 - Manual segmentation is tedious/variable. Can we automate?
- Time activity fitting or dose-rate fitting
- Absorbed dose estimation


Absorbed Dose Estimation

• MIRD schema: widely used for calculating absorbed dose

$$D(r_T, T_D) = \sum_{r_S} \tilde{A}(r_S, T_D) S(r_T \leftarrow r_S)$$


Source region time integrated activity (total number of decays) determined by serial quantitative imaging

Absorbed dose to target per transformation in source. S-values can be at organ, suborgan, voxel or cellular levels

Voxel Dosimetry: Monte Carlo radiation transport or voxel dose kernel convolution

Patient Specific Dosimetry in Radionuclide Therapy

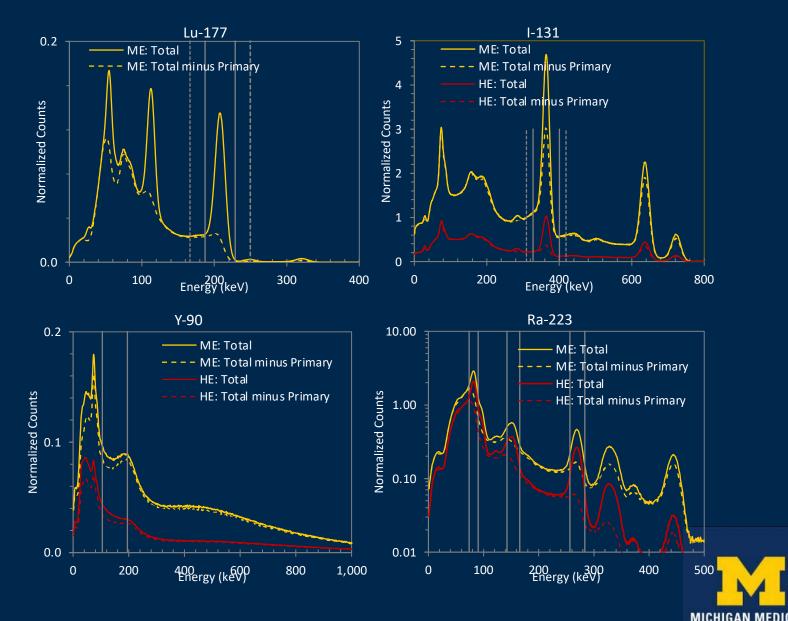
UNIVERSITY OF MICHIGAN

Why SPECT for Radionuclide Therapy Dosimetry?

- SPECT: Most therapy radionuclides emit gamma-rays
 - Direct imaging . No need for surrogate

	T _{1/2}	Decay	E <i>,</i> Emax (MeV)	E _γ (keV)
³² P	14.3 d	β⁻	1.70	None
⁶⁴ Cu	12.7 h	β ⁻ , EC+β+	β⁻ 0.58; β⁺ 0.65	None
⁶⁷ Cu	2.58 d	β⁻	0.58	91(7%), 93(16%), 185(49%)
⁸⁹ Sr	50.5 d	β⁻	1.49	None
⁹⁰ Y	2.67 d	β⁻ <i>,</i> β⁺	2.28	None
¹³¹	8.02 d	β⁻	0.61	80(2.6%), 284(6%), 364(82%), 637(7%)
¹⁵³ Sm	1.95 d	β⁻	0.81	103(30%)
¹⁶⁶ Ho	26.8 h	β⁻	1.85	81(7%), 1379(0.93%), 1582(0.19%)
¹⁷⁷ Lu	6.71 d	β⁻	0.50	113(6), 208(11%)
¹⁸⁶ Re	3.72 d	EC,β⁻	1.07	137(9%)
⁶⁷ Ga	3.26 d	EC		91(3%), 93(39%),185(21%), 300(17%)
¹¹¹ In	2.8 d	EC		171(90%), 245(94%)
^{117m} Sn	13.6 d	IT		159(86%)
²²³ Ra	11.4 d	β ⁻ ,α	5.6	82(20%), 154(15%), 270(10%), 351, 405

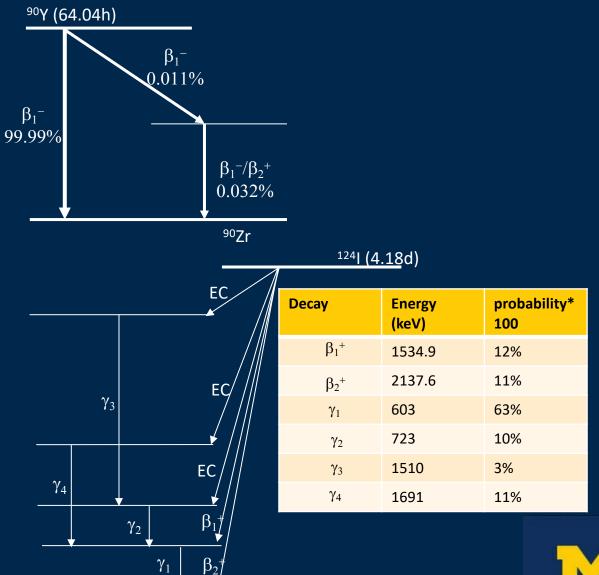
- PET in Radionuclide therapy:
 - Typically, used as an imaging **surrogate**. Exploiting the superior spatial resolution and sensitivity


• Theranostic pairs

- ⁶⁸Ga PET/¹⁷⁷Lu DOTATATE, PSMA
 - Typically for uptake visualization only due to short half-life of ⁶⁸Ga
- ⁶⁴CuPET/⁶⁷Cu SarTATE PRRT
 - Potential for dosimetry?
- ¹²⁴I-PET/¹³¹I radioiodine therapy
 - Used for dosimetry

Quantitative SPECT Imaging of Therapy Radionuclides

- More challenging than diagnostic radionuclides
 - Higher energy and/or multiple emissions
 - Downscatter
 - Poor resolution of HE collimators
 - Low yields
 - Choice of collimator is important
 - Correction for scatter and collimator-detector response (CDR) especially important

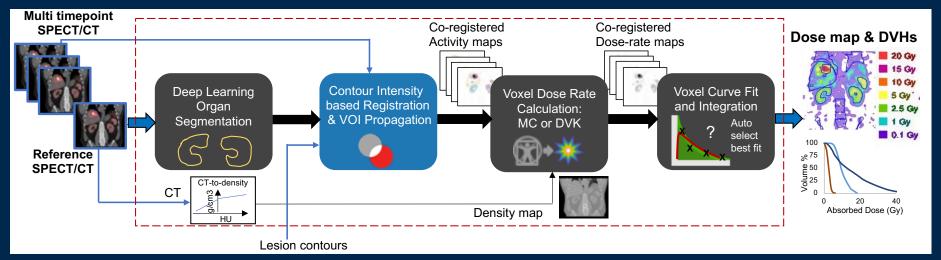


UNIVERSITY OF MICHIGAN

Quantitative PET Imaging of Therapy Radionuclides & Surrogates

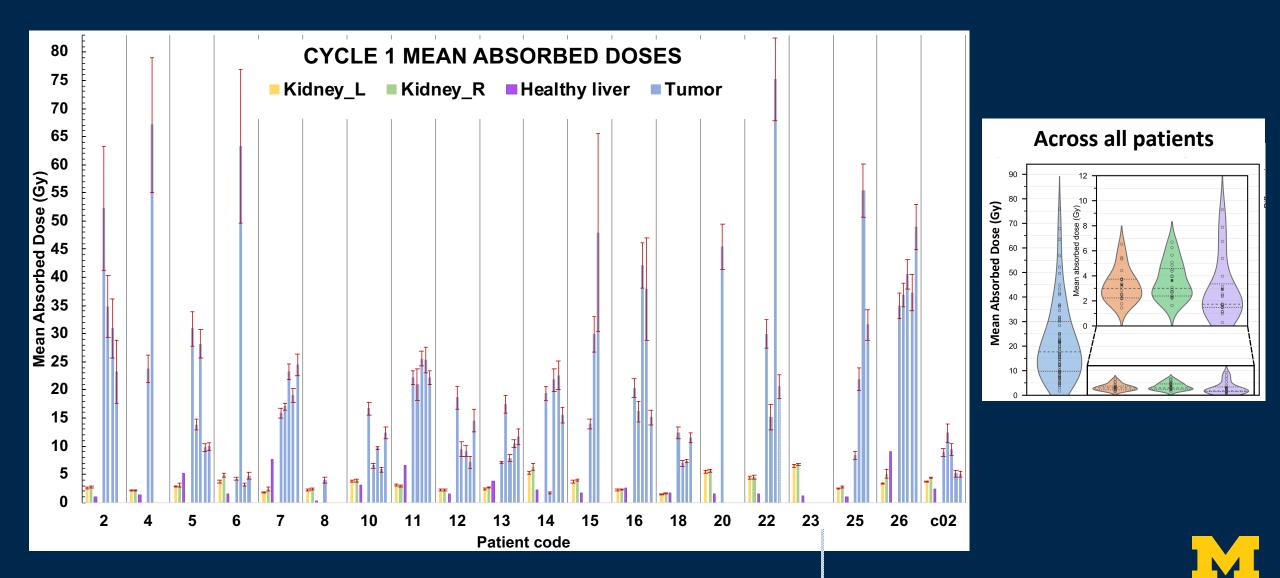
¹²⁴Te

- More challenging than diagnostic radionuclides such as ¹⁸F
 - 'Non-pure' positron emitters
 - Low yields
 - Higher energy positrons
 - Correction for random coincidences and prompt gammas especially important
- Examples
 - ¹²⁴I: Low yield, prompt gammas
 - ⁹⁰Y: Ultra-low yield, bremsstrahlung photons
 - ⁸⁶Y: Low yield, prompt gammas
 - ⁶⁸Ga: Prompt gammas
 - ⁶⁴Cu: Low yield



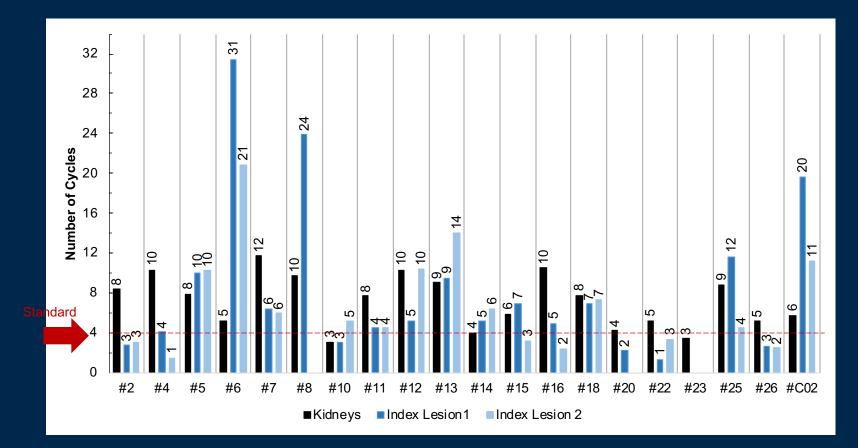
Conti, M., Eriksson, L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys 3, 8 (2016)

¹⁷⁷Lu DOTATATE PRRT: Retrospective Dosimetry Study at U Michigan


- 50 patients: Quantitative SPECT/CT at 4 time points after each cycle (7.4 GBq/cycle x 4)
- Segmentation: Lesions manually by radiologist, organs using deep learning tools
- Registration: contour intensity-based SPECT-SPECT
- Dosimetry: Monte Carlo (DPM code), voxel-level dose-rate fitting (auto select fit function) GOALS
- Tools for practical & reliable dosimetry
- Establish simplifications
- Establish tumor dose effect thresholds for future treatment planning

Dewaraja et al, A pipeline for automated voxel dosimetry: application in patients with multi-SPECT/CT imaging following 177Lu PRRT. J Nucl Med 2022 (In Predepicine

¹⁷⁷Lu DOTATATE Michigan Study: Variability in Dosimetry Results


Dewaraja et al, A pipeline for automated voxel dosimetry: application in patients with multi-SPECT/CT imaging following 177Lu PRRT. J Nucl Med 2022 (In PMES)CINE

MICHIGAN

¹⁷⁷Lu DOTATATE PRRT: Retrospective Dosimetry Study at U Michigan

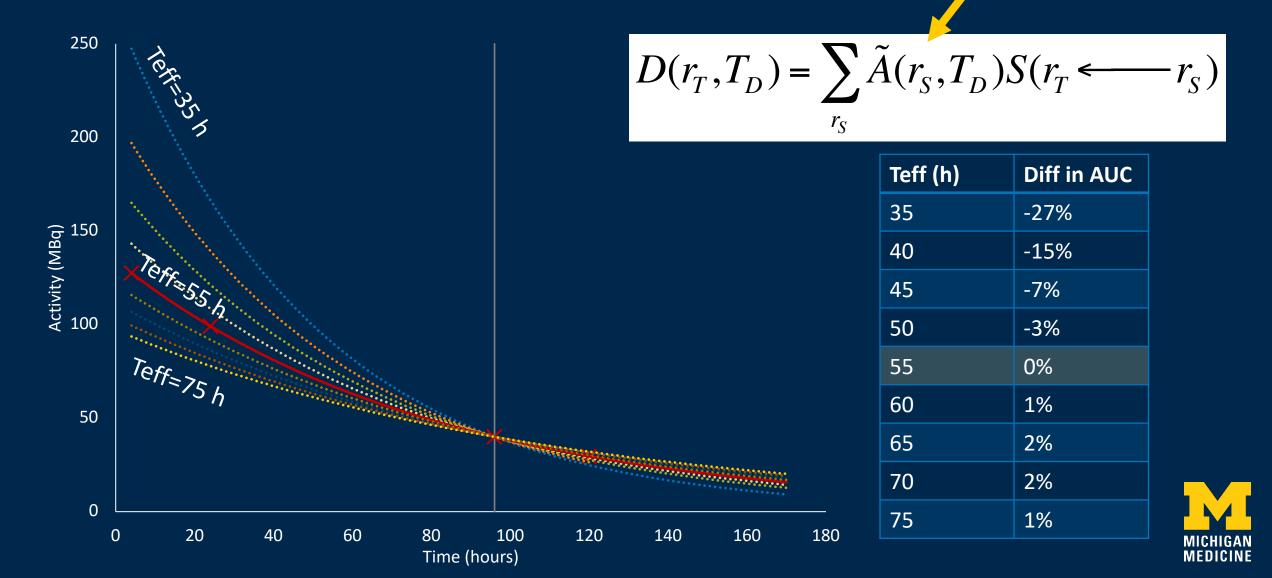
<u>Retrospective analysis</u>: Variation in number of (7.4 GBq) cycles needed to deliver 23 Gy to kidney and 100 Gy to tumor

- 23 Gy threshold from EBRT. 100 Gy estimate from prior dose vs. response studies
- Number of cycles highly variable. Demonstrates the value of patient specific dosimetry

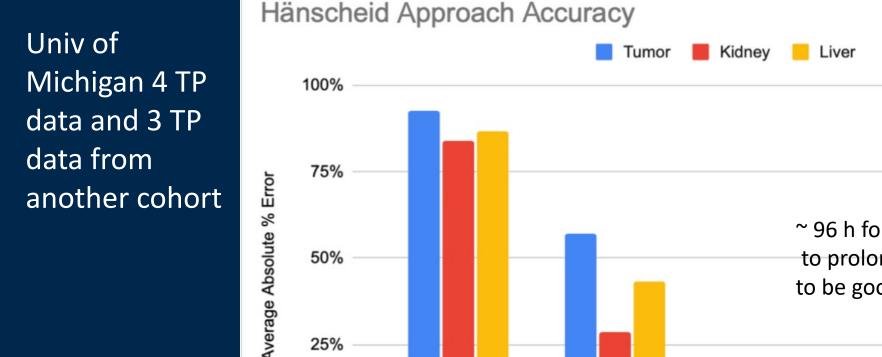
Dewaraja et al, A pipeline for automated voxel dosimetry: application in patients with multi-SPECT/CT imaging following 177Lu PRRT. J Nucl Med 2022 (In PMED)CINE

Why dosimetry guided treatment is not standard practice

- Unlike external beam radiotherapy, dosimetry guided treatment is not standard practice in radionuclide therapy.
- Why?
 - Imaging burden
 - Lack of tools for clinic friendly dosimetry until recently
 - Accuracy/practicality trade-off
 - Scarcity of established dose effects relationships
 - Potentially related to insufficient data
- Recent developments
 - Methods to reduce imaging burden/cost. Single timepoint, planar/SPECT
 - Deep learning tools for auto-segmentation
 - SPECT images directly in activity units (Bq/mL) as with PET systems
 - Commercial voxel dosimetry software, Open Source (MIRDsoft.org)

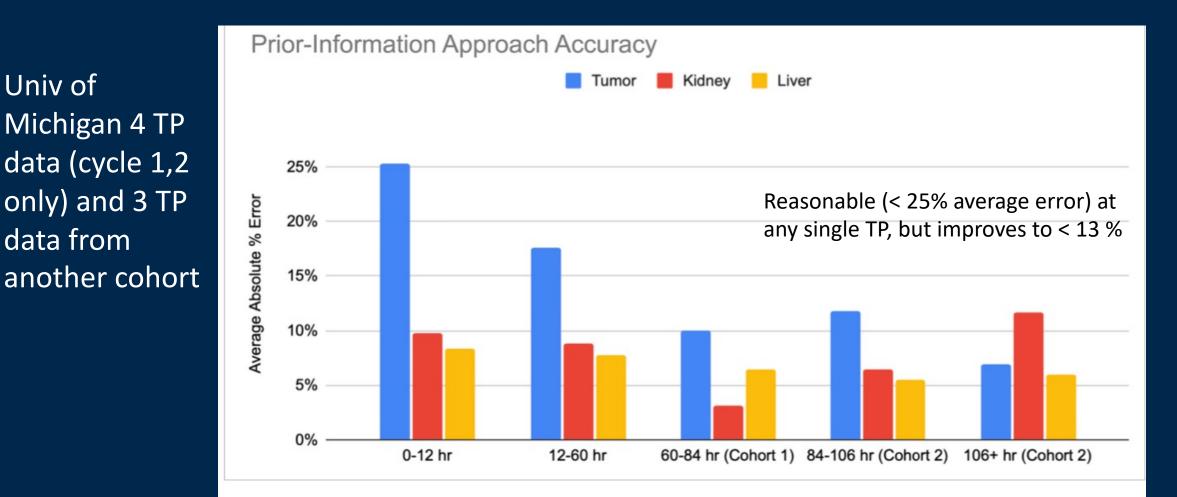


How to reduce the imaging burden? Single TP estimates


- Serial imaging to determine time integrated activity for dosimetry. Burdensome to clinic/patient.
- Time-integrated activity based on imaging at a single point
 - Madsen et al for Y-90 DOTATOC PRRT (Med Phys 2018)
 - Hanschieid et al for Lu-177 DOTATATE PRRT (J Nuc Med, 2018)
 - If there is some knowledge of the population biokinetics, a single measurement time can be chosen to get within 10% of true time-integrated activity.
 - 96 h measurement was suitable for both tumor and normal organs
- Prior cycle information approach: Multi timepoints for one cycle + single timepoint at subsequent cycles
 - Assumes similar biokinetics between cycles
 - Single measurement used to scale the prior cycle time-activity curve

Single Time Point method: why it works? Variations in effective half-life gives similar Area Under the Curve

¹⁷⁷Lu DOTATATE: performance of single timepoint method for tumor/organs and at different imaging points

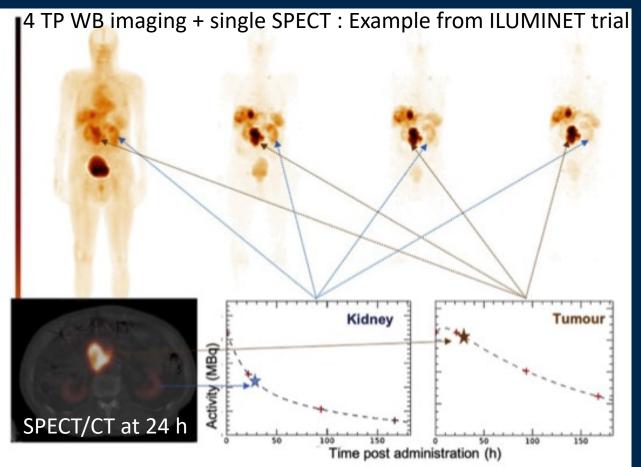


75% 50% 25% 0% 0% 0% 0-12 hr 12-60 hr 250 h for kidney, longer for tumor (due to prolonged retention) but 96 h appears to be good compromise across all tissue 60-84 hr (Cohort 1) 84-106 hr (Cohort 2) 106+ hr (Cohort 2)

FIGURE 5. Average absolute percent error in single-timepoint dosimetry with Hänscheid approach. Results are shown for kidney, liver, and tumor ROIs in bins for the acquisition time post-injection. Early timepoints from Day 0 or Day 1 include results from both patient cohorts.

SurePlan MRT White Paper: Dosimetry for Targeted Molecular Radiotherapy Using a Single Measurement Timepoint

¹⁷⁷Lu DOTATATE: performance of single TP + multi TP for prior cycle


FIGURE 7. Average absolute percent error in single-timepoint dosimetry with the prior-information approach. Results are shown for kidney, liver, and tumor ROIs in bins for the acquisition time post-injection. Early timepoints from Day 0 or Day 1 include results from both patient cohorts.

SurePlan MRT White Paper: Dosimetry for Targeted Molecular Radiotherapy Using a Single Measurement Timepoint

Other methods for reducing imaging burden: planar/SPECT hybrid imaging

- Planar WB imaging: Time-activity
- Quantitative SPECT: at a single time point, t_i. Then
 A (t) = A(t_i)_{SPECT} * C(t)_{planar}/C(t_i)_{planar}
- Practical when multi-time point SPECT is infeasible
 - Less time/cost
 - Exploits SPECT quantification
 - Enables WB imaging
 - Reasonable agreement with multi-TP SPECT reported
- Patients need to return for imaging

Sundlöv, K. Sjögreen-Gleisner, Peptide Receptor Radionuclide Therapy -Prospects for Personalized Treatment, Clinical Oncology, 33 (2), 2021.

Deep Learning Organ Segmentation: Michigan 177Lu DOTATATE Study

CNN kidney segmentation CNN kidney segmentation CNN kidney segmentation													
	N	lanual vs. Fu CNN-segm				Manual vs. CNN with fine tuning [*]							
	Volume Absolute Difference	Mean Dose Absolute Difference	DICE	HD (mm)	MDA (mm)	Volume Absolute Differen	Mean Dose Absolute	DICE	HD (mm)	MDA (mm)			
L Kidney Mean	5%	2%	0.92	10.7	0.92	4%	1%	0.93	8.3	0.80			
Median	4%	1%	0.93	8.5	0.78	3%	1%	0.93	8.2	0.76			
Min Max	0% 18%	0% 5%	0.85 0.94	6.0 36.0	0.68 2.04	0% 17%	0% 5%	0.86	6.0 12.2	0.68			
R Kidney													
Mean	8%	3%	0.91	11.4	0.99	5%	2%	0.93	9.9	0.81			
Median Min	6% 0%	2% 0%	0.93 0.77	9.2 4.5	0.84 0.68	6% 0%	1% 0%	0.93 0.91	8.8 4.5	0.81			
Max	0% 27%	0% 21%	0.77	4.5 24.4	2.05	0% 11%	4%	0.91	4.5 24.4	0.68			

- CNN segmentation on CT:
 - < 1 min
 - High DICE scores and small difference in absorbed dose compared with manuel
 - Further improvement with CNN + quick manual tunning
 - Fine tunning not needed in most cases, but sometimes cysts (kidney), bowel loops (liver) included
 - Potential to further improve
 - Expanded training sets
 - Using both SPECT and CT

Summary: Patient Specific Dosimetry in Radionuclide Therapy

- Evidence showing the value of performing pre-, during- and posttherapy imaging-based dosimetry
- Protocols can be simplified to make dosimetry more practical
 - Planar+SPECT/CT when WB imaging desired and multi-SPECT not practical
 - Single timepoint imaging
 - Prior to application, must be validated for each therapy and tissue type with optimal sampling time point carefully chosen based on comparison with multi-time point imaging
 - Deep learning methods for auto-segmentation
 - Commercial and Open-Source dosimetry tools/software

