Targeted Radionuclide Therapy – Current Status and Trends

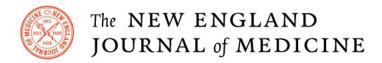
Jacek Capala and Jeff Buchsbaum

Radiation Research Program

Division of Cancer Treatment and Diagnosis

NCI/NIH/HHS

Outline

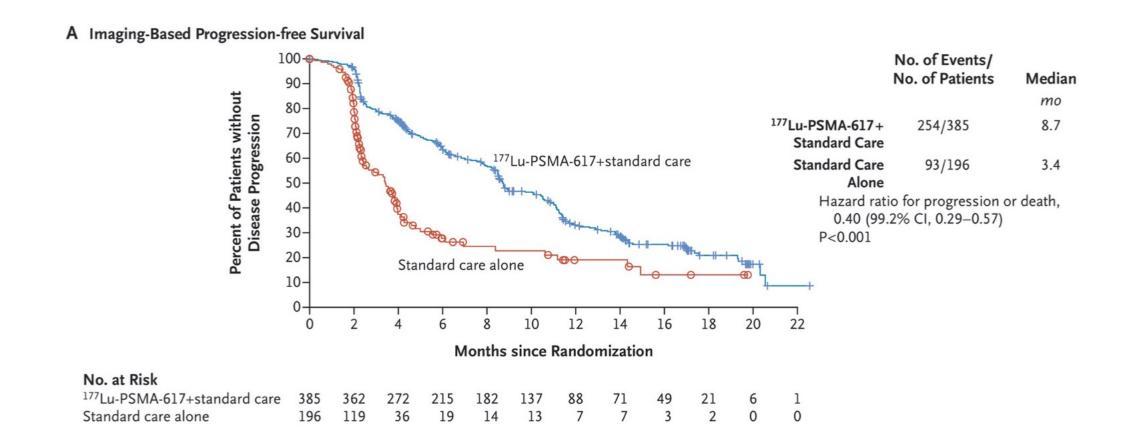

- FDA-Approved Therapeutic Radiopharmaceuticals
- One size does not fit all
- Dose (Gy) matters (efficacy)
- Dose (Gy) matters (safety)
- Dosimetry as a biomarker
- Treatment planning software
- Recent initiatives at professional societies (AAPM, ASTRO, SNMMI)
- Conclusions

RPTs Approved before 2022

RPT agent	Company	Indication	Properties
Radium-223 chloride ^a	Bayer	Bone metastasis	Calcium analogue
⁹⁰ Y-loaded glass microspheres	BTG	Hepatic malignancies	Radioembolization of liver microvasculature
⁹⁰ Y-loaded resin microspheres	CDH Genetech/ Sirtex	Hepatic malignancies	Radioembolization of liver microvasculature
¹³¹ I radioiodine	Jubilant Draximage/ Malklincrodt	Thyroid cancer	Active uptake through Na–I symporter and storage in follicular cells
¹⁵³ [Sm]lexidronam	Lantheus	Cancer bone pain	Binding to hydroxyapatite matrix
¹⁷⁷ Lu-labelled DOTATATE	Novartis/AAA	Neuroendocrine tumours	SSR-mediated binding
[¹³¹ l]mlBG	Progenics	Adrenergic receptor ⁺ tumours	Active uptake mechanism via the adrenaline transporter and storage in presynaptic neurosecretory granules

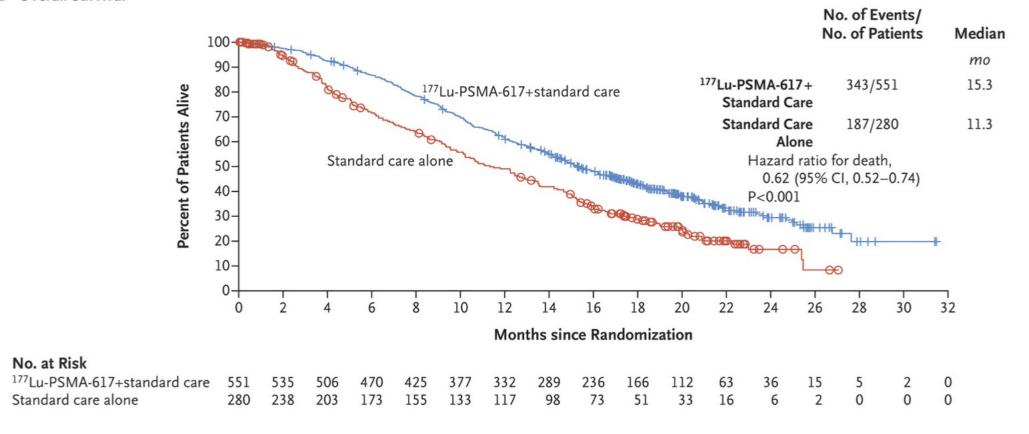
Sgouros et al. Nature Reviews/Drug Diiscovery, 2020

VISION



ORIGINAL ARTICLE

Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer

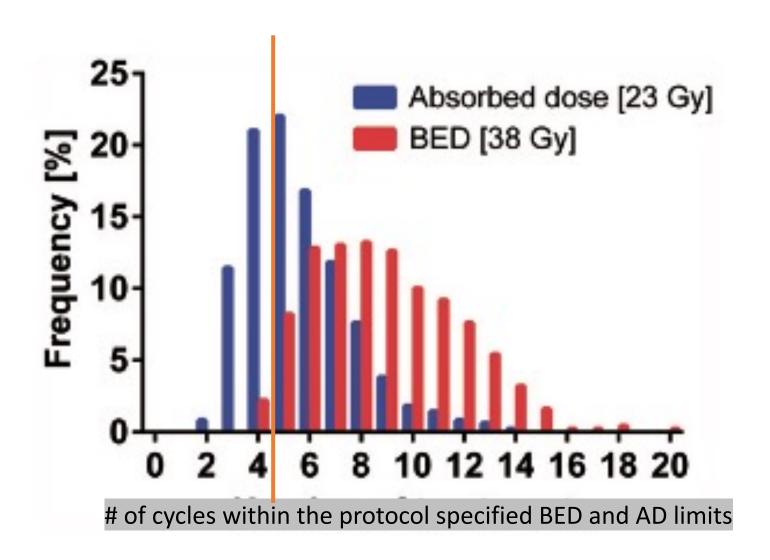

Oliver Sartor, M.D., Johann de Bono, M.B., Ch.B., Ph.D., Kim N. Chi, M.D., Karim Fizazi, M.D., Ph.D., Ken Herrmann, M.D., Kambiz Rahbar, M.D., Scott T. Tagawa, M.D., Luke T. Nordquist, M.D., Nitin Vaishampayan, M.D., Ghassan El-Haddad, M.D., Chandler H. Park, M.D., Tomasz M. Beer, M.D., et al., for the VISION Investigators*

VISION

VISION

B Overall Survival

Current Approach

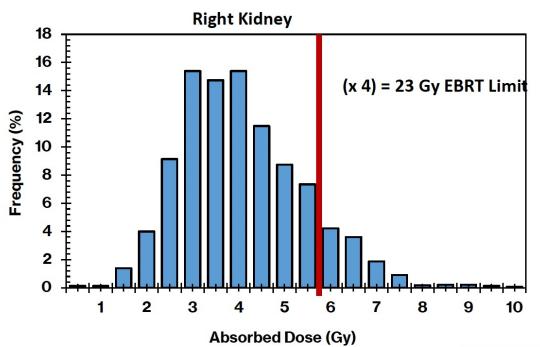

- 100 mCi radioiodine for thyroid ablation
- 200 mCi radioiodine for thyroid therapy
- 200 mCi Y-90 microspheres for treatment of liver metastases
- 200 mCi I-131 mIBG for neuroendocrine tumours
- 200 mCi x 4 for Y-90 DOTATATE of neuroendocrine tumours
- 200 mCi x 4 for Lu-177 DOTATATE for neuroendocrine tumours
- 200 mCi x 4 6 for Lu-177 PSMA for prostate cancers
- 50 kBq/kg x 6 for Ra-223 for bone metastases

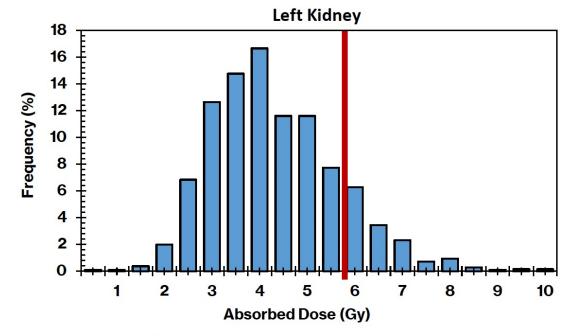
Empirical chemotherapy paradigm – learning from observation and experience...

One Size Does Not Fit All

	Absorbe	d Doses for T	umors and Organs at Risk	in 1	¹⁷⁷ Lu PRRT Studies		
			Absorbed dose (Gy/GBq)				
Organ or lesion	No. of patients	Median	Range		Mean ± SD	Method	Reference
Red marrow	6				0.07 ± 0.01	Blood	9
	61				0.04 ± 0.02	Blood	10
	15	0.02	0.01-0.13		0.034 ± 0.030	Blood	11
	12	0.03	0.02-0.06		0.04 ± 0.02	Blood	13
	200	0.02	0.01-0.05			Blood	14
	7	≤0.07* (≤0				SPECT	16
	10	0.04	0.02-0.06			Blood	33
Kidneys	6				0.88 ± 0.19	Planar	9
	61				0.90 ± 0.30	Planar	10
	16				0.97 ± 0.24	Planar	12
	16				0.90 ± 0.21	SPECT	12
	12	0.68	0.33-1.65		0.80 ± 0.35	Planar	13
	200	0.61	0.27-1.35			SPECT	14
	88		0.36-0.78		0.57 ± 0.09	Planar	15
	7	1.15* (0.6	0.54-2.16* (0.34-1.82†)		± 0.49* (0.84 ± 0.49†)	SPECT	16
	10	0.62	0.45-17.74			Planar	33
	33		0.22.0.4		0.8 ± 0.3	Planar	42
Tumors	6		3.9–37.9			Planar	9
	61				9.7 ± 11.1	Planar	10
	16	6.7	0.1–20			SPECT	12
	88		1.3–4.8		3.41 ± 0.68	Planar	15
	7		0 11* (1 11†)			SPECT	16
	10		0.6–56			Planar	33
	24	6.8	1.4–23			SPECT	42
*Pretherapeutic. †Posttherapeutic.					Eberle	i <u>n</u> Et al	J <u>Nucl</u> M

One Size Does Not Fit All




¹⁷⁷Lu-DOTATATET (7.4MBq)

With BED < 38 Gy to the kidneys and AD < of 2 Gy to marrow 95% could get > 4 cycles

One Size Does Not Fit All

777 ¹⁷⁷Lu-DOTATATE Patients
SPECT/CT 1, 4 and 7 days post injection

 $P(D_{kidney} \leq 23 \ Gy) = 0.85$

Dose (Gy) Matters (efficacy)

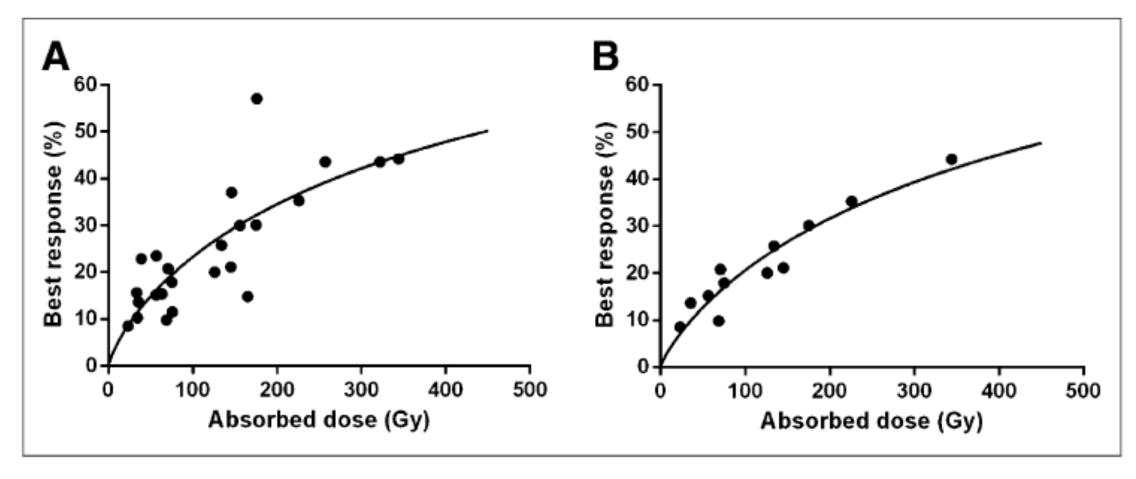
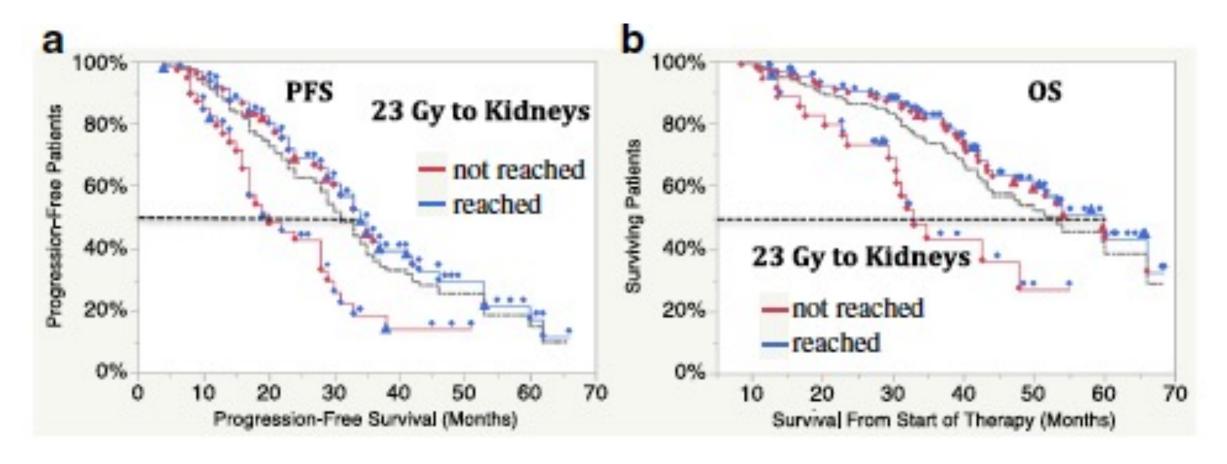
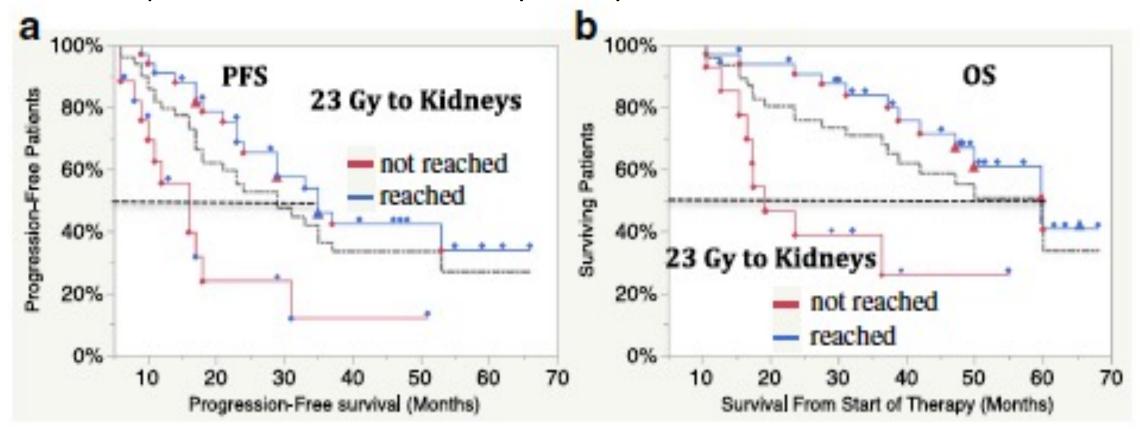



FIGURE 5. Tumor dose–response relationship for patients with PNETs treated with PRRT using ¹⁷⁷Lu-DOTATATE, including tumors larger than 2.2 cm (A) and only tumors larger than 4 cm (B).

Dose (Gy) Matters (efficacy)


154 patients who stopped therapy for reasons other than progression or clinical deterioration

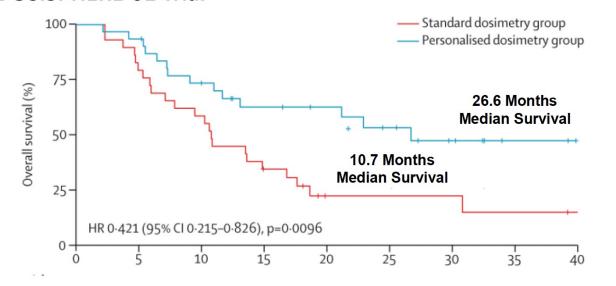
European Journal of Nuclear Medicine and Molecular Imaging (2018) 45:970–988

Dose (Gy) Matters (efficacy)

50 patients who received exactly four cycles of ¹⁷⁷Lu-DOTAoctreotate.

Netter-1 Disappointment

¹⁷⁷Lu-Dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial


Jonathan R Strosberg, Martyn E Caplin, Pamela L Kunz, Philippe B Ruszniewski, Lisa Bodei, Andrew Hendifar, Erik Mittra, Edward M Wolin, James C Yao, Marianne E Pavel, Enrique Grande, Eric Van Cutsem, Ettore Seregni, Hugo Duarte, Germo Gericke, Amy Bartalotta, Maurizio F Mariani, Arnaud Demange, Sakir Mutevelic, Eric P Krenning, on behalf of the NETTER-1 investigators*

Interpretation ¹⁷⁷Lu-Dotatate treatment did not significantly improve median overall survival versus high-dose longacting octreotide. Despite final overall survival not reaching statistical significance, the 11·7 month difference in median overall survival with ¹⁷⁷Lu-Dotatate treatment versus high-dose long-acting octreotide alone might be considered clinically relevant. No new safety signals were reported during long-term follow-up.

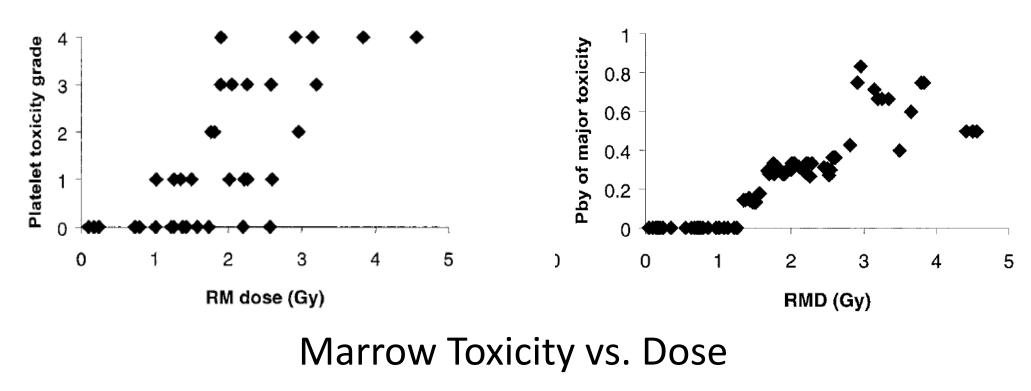
Individual Treatment Planning Improves Survival

hepatocellular carcinoma that was not amenable to surgery or local ablative treatment

Personalised Dosimetry:

≥ 205 Gy to Index Lesion Limit normal tissue ≤120 Gy Hepatic reserve ≥30%

Standard Dosimetry:


120 Gy to Perfused Lobe

~ 16-month median survival benefit

36% of patients down-staged to surgery in personalized dosimetry are versus 4% in standard

These results challenge the interpretation of the previously published negative phase 3 trials, comparing Y-90 microspheres with other treatments, in which personalized dosimetry was not used.

Dose (Gy) Matters (safety)

*J. O'Donoghu et al., "Hematologic Toxicity in Radioimmunotherapy: Dose-Response Relationships for I-131 Labeled Antibody Therapy" Canc. Bio. Radiopharm., 2004

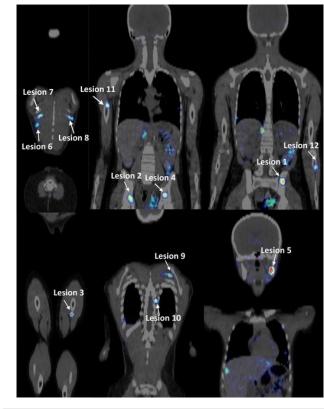
No RPT safety data for the kidneys

Dose (Gy) Matters (safety)

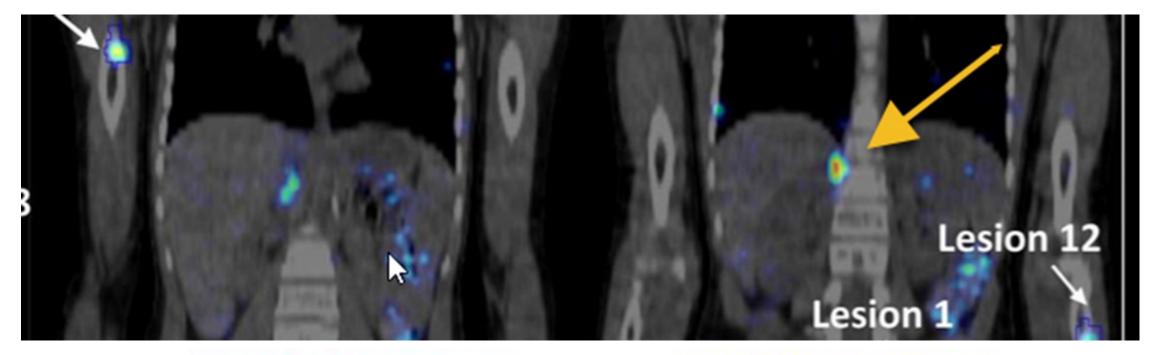
- Combination with other therapies
 - radiotherapy
 - radiosensitizers
 - immunotherapy
- Retreatment

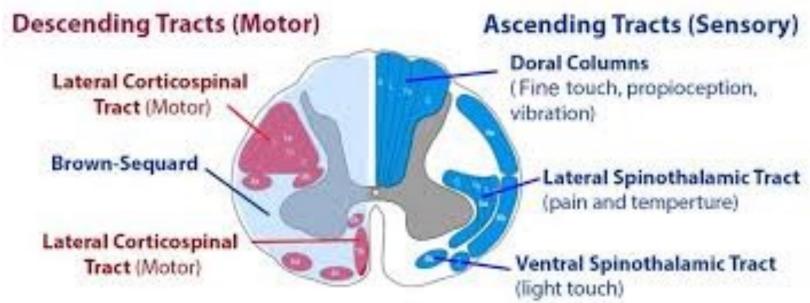
> Mol Imaging Biol. 2015 Apr;17(2):284-94. doi: 10.1007/s11307-014-0783-7.

Patient-specific dosimetry using pretherapy [124I]m-iodobenzylguanidine ([124I]mIBG) dynamic PET/CT imaging before [131I]mIBG targeted radionuclide therapy for neuroblastoma


Shih-ying Huang ¹, Wesley E Bolch, Choonsik Lee, Henry F Van Brocklin, Miguel H Pampaloni, Randall A Hawkins, Aimee Sznewais, Steven G DuBois, Katherine K Matthay, Youngho Seo

Affiliations + expand


PMID: 25145966 PMCID: PMC4336853 DOI: 10.1007/s11307-014-0783-7


Free PMC article

Target organ	Absorbed dose (Gy)
Brain	1.46
Osteogenic cells	1.84
AM	2.25
Skin	2.72
Muscle	3.77
Colon wall	3.84
SI	3.99
Breasts	4.06
Kidneys	4.50
Total body	4.88
Thymus	4.93
Ovaries	4.94
Pancreas	4.96
Uterus	5.07
Stom wall	5.14
Right adrenal	5.91
UB wall	6.01
GB wall	7.63
Spleen	15.96
Lungs	21.16
Thyroid	22.56
Liver	34.27
Hrt wall	36.49
Salivary glands	98.02

Metabolic tumor volume (cm³)	[¹³¹ I]mIBG residence time (MBq-hr/MBq)	Absorbed dose (Gy)	% Self- dose	% Cross- dose
0.87	0.461	946.27	99.80	0.20
3.59	1.634	892.16	99.78	0.22
0.37	0.317	1,331.61	99.90	0.10
0.19	0.199	1,641.32	99.88	0.12
0.57	0.312	886.88	99.08	0.92
0.52	0.179	505.23	99.24	0.76
0.36	0.116	522.29	99.23	0.77
0.33	0.129	637.26	99.50	0.50
1.36	0.219	253.94	91.17	8.83
0.17	0.061	461.31	99.36	0.64
0.50	0.099	312.26	99.31	0.69
0.56	0.049	143.86	99.31	0.69
	0.87 3.59 0.37 0.19 0.57 0.52 0.36 0.33 1.36 0.17	volume (cm³) time (MBq-hr/MBq) 0.87 0.461 3.59 1.634 0.37 0.317 0.19 0.199 0.57 0.312 0.52 0.179 0.36 0.116 0.33 0.129 1.36 0.219 0.17 0.061 0.50 0.099	volume (cm³) time (MBq-hr/MBq) dose (Gy) 0.87 0.461 946.27 3.59 1.634 892.16 0.37 0.317 1,331.61 0.19 0.199 1,641.32 0.57 0.312 886.88 0.52 0.179 505.23 0.36 0.116 522.29 0.33 0.129 637.26 1.36 0.219 253.94 0.17 0.061 461.31 0.50 0.099 312.26	volume (cm³) time (MBq-hr/MBq) dose (Gy) dose 0.87 0.461 946.27 99.80 3.59 1.634 892.16 99.78 0.37 0.317 1,331.61 99.90 0.19 0.199 1,641.32 99.88 0.57 0.312 886.88 99.08 0.52 0.179 505.23 99.24 0.36 0.116 522.29 99.23 0.33 0.129 637.26 99.50 1.36 0.219 253.94 91.17 0.17 0.061 461.31 99.36 0.50 0.099 312.26 99.31

Biomarkers

- Select patients most likely to respond
- Avoid toxicity
- Tumor biopsy
- Serum sampling
- Genetic and epigenetic marker analysis
- Methodology/Results Must be rigorously qualified/validated retrospectively or in prospective studies
- Standardized
- Incorporated in the design of clinical trials

Dosimetry

- Select patients most likely to respond
- Avoid toxicity
- Quantitative imaging
- Blood radioactivity counting
- Dose calculation
- Methodology/Results must be rigorously qualified/validated retrospectively or in prospective studies
- Standardized
- Incorporated in the design of clinical trials

Dosimetry Software

- Hermes Medical Solutions: a suite of dosimetry tools for ⁶⁷Ga, ¹²³I, ¹³¹I, ¹³¹In, ⁸¹Kr, ¹⁷⁷Lu, ^{99m}Tc, ²⁰¹TI, ¹⁶⁶Ho, ⁹⁰Y, and ¹³³Ba (FDA cleared)
- MIM Software: image co-registration, automatic organ segmentation (using an FDA-cleared artificial-intelligence autosegmentation platform), dosimetry for several radionuclides, developing 2 methods of single-time-point dosimetry for ¹⁷⁷Lu DOTATATE</sup>
- **PLANET Dose** (DOSIsoft): image co-registration, automatic organ segmentation, FDA cleared for ⁹⁰Y-microsphere SIRT and CE-marked for other isotopes (⁹⁰Y, ¹⁷⁷Lu, ¹³¹I [pending]).
- Rapid: quantitative imaging and dosimetry consulting and analysis services and the software, dosimetry calculations for a number of radionuclides, including ⁹⁰Y, ^{99m}Tc, ¹¹¹In, ¹²³I, ¹³¹I, ²⁰¹TI, ²²³Ra, and ²²⁷Th. A 510k application for FDA clearance in development.
- QDOSE (ABX-CRO): image co-registration, automatic organ segmentation, dose calculations for 27 commonly used radionuclides, including 90Y-microsphere selective internal radiation therapy (SIRT).
- The GE Dosimetry Toolkit (GE Healthcare): image co-registration, automatic organ segmentation, dosimetry for ¹³¹I-iodide thyroid cancer therapy, ⁹⁰Y-SIRT, and ¹⁷⁷Lu therapies.
- PMOD (PMOD Technologies): automatic organ segmentation generates dosimetry input data that may be directly imported into an OLINDA/EXM case file or an IDAC, version 2.1, file.
- **Simplicit90Y** (Mirada Medical): software package developed for personalized ⁹⁰Y-SIRT planning, voxelwise techniques for pre- and posttreatment dosimetry.
- RapidSphere: software tools for ⁹⁰Y-microsphere dosimetry.
- Voximetry Torch: dose calculation algorithm in Torch has been benchmarked against the GEANT4 MC code, for multiple isotopes, including ⁹⁰Y, ¹⁷⁷Lu, ¹³¹I, and ²²³Ra. It is possible to generate a dosimetry report structured to meet the requirements for complex dosimetry billing codes in the United States

AAPM

AAPM COMMITTEE TREE

Radiopharmaceutical Therapy Subcommittee (RPTSC)

- bookmark this page (bookmarks show under "My AAPM" in the menu to left)

No Website on file. | Directory: Committee | Membership

Email You may send email to this group now using gmail or outlook.

- or -

You may save the address 2022.RPTSC@aapm.org to your local address book. This alias updates hourly from the AAPM Directory.

Charge

- 1. Consolidate, disseminate and maintain available information concerning RPT methodologies, dosimetry, science and practice.
- 2. Establish structures needed for providing guidelines and Standard Operating Procedures (SOPs) for new and existing RPTs such as Task Groups, Working Groups or MPPGs.
- 3. Take an active role in the education of the AAPM and general radiation oncology community regarding RPT methodologies and clinical practice.
- 4. Coordinate with stakeholder groups within AAPM, advising them of overlaps and seeking mutual solutions where needed.
- 5. Coordinate with stakeholder groups outside of AAPM to develop uniform and effective approaches to common problems with regard to RPT. These may include: SNMMI, EANM, ASTRO, ESTRO, ICRU, IAEA, ICRP, ABS, NIST, FDA, IROC, NRC, DOE.

Chair

Robert Hobbs Subcommittee Chair

ASTRO

Radiopharmaceutical Therapy

The ASTRO Think Tank: Radiopharmaceutical Therapy (RPT) aims to:

- 1. Engage with RPT stakeholders
- 2. Explore the importance of personalized dosimetry for RPT

Activities of the Think Tank include:

- A series of online sessions (mostly invitation-only) for ASTRO experts to network, collaborate, and discuss with RPT stakeholders about the field of RPT
- Collaborative review article development
- · Collaborative grant proposal development

SNMMI

RPT Dosimetry Task Force

co-chairs: George Sgouros and Pat Zanzonico

JNM Dosimetry Supplement Dec 2021

Radiopharmaceutical Dosimetry for Cancer Therapy: From Theory to Practice

Guest editors: Richard L. Wahl, MD, and John Sunderland, PhD

Can the tailoring of drug dosage improve the effectiveness of radiopharmaceutical therapy (RPT) for cancer patients? *The Journal of Nuclear Medicine* has issued a new supplement addressing both the rapid progress and the challenges in applying patient-specific radiation dosimetry to guide RPT.

Recent SNMMI Meeting

8:30-11:00 am **Dosimetry**

Moderator: Stephen A. Graves, PhD, DABR – University of Iowa

Presentations include:

Dosimetry Infrastructure

Bryan P. Bednarz, PhD. – Wisconsin Institutes for Medical Research, University of Wisconsin Madison

Latest updates on Y-90 Dosimetry

Yuni K. Dewaraja, PhD – University of Michigan

• Dosimetry in the Treatment of Neuroendocrine Malignancies

Stephen A. Graves, PhD, DABR – University of Iowa

Latest on Dosimetry in Thyroid Cancer

Douglas Van Nostrand, MD, FACP, FACNM, MedStar Research Institute and Washington Hospital Center

Optimizing Dosimetry Workflow in Nuclear Medicine

Stephen A. Graves, PhD, DABR – University of Iowa

Reimbursement for Dosimetry

Gary Dillehay, MD - Northwestern Memorial Hospital.

Recent SNMMI Meeting

There is a consensus in Nucl. Med. community leaders that individualized, dosimetry-based treatment planning is needed to improve the outcome of RPT, but they are getting pushback from medical oncologist and hospital administration based on the current standard procedures.

Conclusions:

- RPT tsunami is on the way
- Current "one size fits all" approach is suboptimal
- Dosimetry could be considered as a biomarker of "safe" and "effective" treatment.
- Individualized dosimetry-based treatment planning has a potential to improve the outcome, avoid toxicity, and enable combination of RPT with other therapeutical modalities
- RPT dosimetry is gaining traction at relevant professional societies, but faces pushback
- The advantage of Individualized dosimetry-based treatment planning has to be proved in randomized clinical trails