Recent *Activities* of the NIST Nuclear Medicine Program

Denis E. Bergeron

Nuclear Medicine Project, Radiation Physics Division

denis.bergeron@nist.gov

12 April 2022

The becquerel in nuclear medicine

Precision measurements of activity are the foundation for:

- BQ Decays per second (of a radionuclide)
- Reliable administration of patient dosages
- Quantitative molecular imaging
- Personalized dosimetry
- Multicenter trials

Zimmerman et al., Z. Med. Phys. 27 (2017) 98.

https://www.snmmi.org/NewsPublications/NewsDetail.aspx?ItemNumber=29483

Radionuclide metrology for medicine

COMMISSION INTERNATIONALE DES ÉTAL ONS DE DADANA

NIST was measuring activity before there was a Bq. And there's always been a focus on medical applications.

CERT	IFICAT.		Quantitative	
Das als Chlorid dargestellte Radiumpröparet Nr. é. entstammt St. Joachimstate/ Urangeschikned und itt demaach praktisch frei Meschor. Es enhist <i>26 50</i> Milligramm Sal. Es wurde am <i>I</i> . <i>KL</i> (492-singe- schlossen in ein Glaraborben (Thuring- ger Glas) von 027 mm Wendstrike. Enterna Durchmener 22 cm Liake	La précision de ces résultats est considérée comme assurée à une approximation de 0.2 °/ ₀ .	These statements are considered correct to $D \cdot \mathbf{Z}^{\circ}/_{0}$.	Biomarkers Alliance + RSNA	Hand Hand Hand Hand Hand Hand Hand Hand
Auseren Durannesse 3 hm., Lange A. mm, an dessen Ende ein feine Platinderhet ingeschmolzen ist. Dasslebe wurde als Steastiere Stantser an den Wiener Ealons und de Paris nach mehreren i-Strahding methoden unabhängi voncinander gesicht. Dar i Strahlung nach ist es im plater 1973. Engineent 2028. mg plater 1973. Engineent 2028. mg por ansteat els por ansteat els	Pour les méanes faites à Paris	President flo Commission	Xofigo radium Ra 223 dichloride	
reach, (De Janraine Achanne berragt etw. 04 Promilie) Unter Zugrundelegung der Atom- gewichte von 28 für Badam 35431 für Date entspricht dies 26.4.2.4. ent RoCh, Radam, Ra 26.4.2.4. ent RoCh, Radam, Die Genzuicht dieser Annabe	Mr. Curies	E Rutherful	2	S NM SOCIETY OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
wird auf 0. I'r, für gesichert ge- halten. Frü chie Weiner Merrung Stefan Meye	minnes faite miens file Commission Prove E Rutherful No. Cercies			
nttps://www.nist.gov/	blogs/taking-measure/saving-ma	arie-curies-last-radium-standard		

• Imaging

- Challenges associated with EC branches
- Therapy
 - Challenges associated with decay chain nuclides

- Imaging
 - Challenges associated with EC branches
- Therapy
 - Challenges associated with decay chain nuclides

- Imaging
 - Challenges associated with EC branches
- Therapy
 - Challenges associated with decay chain nuclides

- Imaging
 - Challenges associated with EC branches
- Therapy \bullet

1711, u comparison

Challenges associated with decay chain nuclides

223Ra standard & data

2231 dose caltactors

see phantom

18F standard

Dissemination 68Gemock symeeupdate

33Ba phantoms

224Ra comparise

eview

, branchin

2AI data

2020 2023 2016 2018 2019 2021 2022 2012 2013 2014 2015 2017

133Ba calibrator misuse

6ACU 818F SIRTI COMPATISON

Dose calreview

68Ge comparison & data

Challenges associated with EC branches

Decay by electron capture competes with positron emission.

Let's talk about (anti)coincidence counting.

- Primary method: $N_{LS} = N_0(1 Y)$
- Need decay to an excited state
- 0.0 Stable Corrections required when KLM capture probabilities differ between monitored and contributing EC decays

http://www.nucleide.org/DDEP_WG/Nuclides/Cu-64_tables.pdf

Challenges associated with EC branches

Decay by electron capture competes with positron emission.

Let's talk about (anti)coincidence counting.

- Primary method: $N_{LS} = N_0(1 Y)$
- Need decay to an excited state
- Corrections required when KLM capture probabilities differ between monitored and contributing EC decays

http://www.nucleide.org/DDEP_WG/Nuclides/Cu-64_tables.pdf

		Method	a,	a ₃	E _{LS} Start	E _{LS} End	Description	(A/N ₀) / %	F	(A'/N ₀) / %	u _c / %
		1	0	1	2	9	Corr. Lin	100	0.9967	99.67	0.09
		2	0	1	2	9	Corr. Quad	99.19	1.0017	99.36	0.20
		3	0.47	0.53	2	558	Corr. Lin	102.27	0.9789	100.12	1.39
	106	- 4	0.47	0.53	T 2	558	oprr. Quad	103.53	0.9660	100.01	1.80
	104	- 5		т1	• 2		Scaling			99.78	0.02
% /	102	- 6		• 53	2		Scaling			99.78	0.12
(°/)	100			27	2_	558	Scaling			99.96	0.03
A)	100		J		•	- C		100.49	AVE	99.81	
	98	0 1	2	3	4 5	6 7		2.01	SD	0.25	
	Method										

ARI 134, 280-285 (2018).

Methods comparison – Cu-64

LTAC with Monte Carlo correction adopted as primary standard. **Radionuclide calibrator** settings published. **Gamma-ray emission** intensities re-evaluated. **Difficulties with figure-of**merit based model observed.

ARI 134, 280-285 (2018); 139, 266-273 (2018); 129, 6-12 (2017).

Methods comparison – Cu-64

LTAC with Monte Carlo correction adopted as primary standard. **Radionuclide calibrator** settings published. **Gamma-ray emission** intensities re-evaluated. **Difficulties with figure-of**merit based model observed.

ARI 134, 280-285 (2018); 139, 266-273 (2018); 129, 6-12 (2017).

EC branches and TDCR Counting

In a system with three PMT which have equal quantum tection for triple cointection of the calculated according to

$$\varepsilon_{\mathrm{T}} = \int_{0}^{E_{\mathrm{max}}} S(E) \left(1 - \mathrm{e}^{\frac{-E \cdot Q(E)}{3 \cdot M}} \right)^{3} \mathrm{d}E, \qquad (3)$$

the counting efficiency for the logical sum of double coinnces is given by

$$\varepsilon_{\rm D} = \int_{0}^{E_{\rm max}} S(E) \ (3(1 - e^{-EQ(E)/3M})^2 - 2(1 - e^{-EQ(E)/3M})^3) dE.$$
(4)

Here also, the counting efficiencies depend on the free parameter M. The free parameter of a given LS sample is defined by the condition

$$\frac{\varepsilon_{\rm T}(M)}{\varepsilon_{\rm D}(M)} = \frac{R_{\rm T}}{R_{\rm D}},\tag{5}$$

where $R_{\rm T}$ and $R_{\rm D}$ are the experimentally determined net counting rates in the triple and the double channels, respectively. After determination of the free parameter, the counting

Let's talk about tiple-todouble coincidence ratio counting.

- Primary method
- Liquid scintillation counting
- Discreet electron energies from EC decays make things tricky

Efficiencies depend on the energy spectrum and the energy-dependent quench function

Metrologia 52, S172-S190 (2015).

detec

cide

EC branches and TDCR Counting

Let's talk about tiple-todouble coincidence ratio counting.

- Primary method
- Liquid scintillation counting
- Discreet electron energies from EC decays make things tricky

With discreet peaks in the energy spectrum, the weights of the peaks dictate the shape of the efficiency curves.

Wile E. Coyote & Cu-64

Standardization of ⁶⁴Cu using an improved decay scheme

LTAC works, TDCR comments on branching NIST

Wile E. Coyote & I-124

Dealing with EC

ARI 154, 108849 (2019).

Always use multiple methods and design measurements to reduce sensitivity to decay data uncertainties Work for improved decay data Work for improved efficiency models Realistic uncertainty estimates

I used two PET nuclides as examples. The NIST primary standards were achieved with: 0.51 % combined standard uncertainty for Cu-64 activity 1.2 % combined standard uncertainty for I-124 activity

Dissemination of activity standards

NIST activity standards are the basis for:

- Benchmark radionuclide calibrator settings
- Revised absolute gamma-ray emission intensities
- Future calibrations

An update on 'dose calibrator' settings for nuclides used in nuclear medicine

Denis E. Bergeron and Jeffrey T. Cessna

NMC 39, 500-504 (2018).

ARI 154, 108849 (2019).

- Imaging
 - Challenges associated with EC branches
- Therapy \bullet

1711, u comparison

Challenges associated with decay chain nuclides

223Ra standard & data

2231 dose caltactors

see phantom

18F standard

Dissemination 68Gemock symeeupdate

33Ba phantoms

224Ra comparise

eview

, branchin

2AI data

2020 2023 2016 2018 2019 2021 2022 2012 2013 2014 2015 2017

133Ba calibrator misuse

6ACU 818F SIRTI COMPATISON

Dose calreview

68Ge comparison & data

Medically important alpha emitters

(Some) Medically important alpha emitters NST

LS counting efficiencies from decay data

Triple-to-double Coincidence Ratio (TDCR) counting

$$TDCR = N_{\rm T}/N_{\rm D} = \varepsilon_{\rm T}/\varepsilon_{\rm D}$$

The MICELLE2 model* uses a Monte Carlo approach to calculate ε_T and ε_D for β^- decay branches

*Kossert & Grau Carles, Appl. Radiat. Isotop. 68, 1482-1488 (2010).

We got about 5.65 counts per ²²⁴Ra decay

²²⁴Ra decays by four α -emissions

Following Bateman (1908), concentrations of isotopes in a decay chain are calculable from initial concentrations and decay constants (λ)

$$\frac{dN_1}{dt} = -\lambda_1 N_1$$
$$\frac{dN_i}{dt} = \lambda_{i-1} N_{i-1} - \lambda_i N_i \quad (i = 2, n)$$

²²⁴Ra reaches equilibrium >6 d after t_{sep}

	T _{1/2}	A/A _{Ra-224}
²²⁴ Ra	3.631(2) d	1
²²⁰ Rn	55.8(3) s	1.000178(1)
²¹⁶ Po	0.148(4) s	1.000178(1)
²¹² Pb	10.64(1) h	1.13928(15)
²¹² Bi	60.54(6) min	1.15263(15)
²¹² Po	300(2) ns	0.7385(11)
²⁰⁸ TI	3.058(6) min	0.4144(20)

Most γ-rays in the decay chain come from ²¹²Pb and ²⁰⁸Tl

Pre-equilibrium activity assays are tricky

Pre-equilibrium assay?

Most ionization chamber response is from progeny Response changes rapidly during ingrowth

Pre-equilibrium assay requires good t_{sep}

Equilibration considerations

²²⁴Ra (longest-lived progeny is ²¹²Pb, $T_{1/2}$ = 10.6 h) takes > 6 d to reach equilibrium

Separated from its parent, ²¹²Pb (longest-lived progeny is ²¹²Bi, $T_{1/2}$ = 60.55 min) reaches equilibrium in ~ 12 h.

Breakthrough of the parent leads to "supported" ²¹²Pb

Pb-212 radionuclide calibrator settings

1					0.1012	NUTTO	and the state of the state of the
²⁰⁷ Bi	Bismuth	846 -	13920030.00	1.7	38 Y	NBS73	Ref. for 1064, 569.7, 76.7, 1772 keV
20871	Thallium	571÷2		1230940	3.07 M	NM75	
212Pb	Lead	101		Sat the Call the netter real make to obtain	10.6 H	NM75	Decays to ²¹² Bi; eqb. after 1 hr. See App. II.
²¹² Bi	Bismuth	489×10	- 10 201100	eruq (lluijie	60.5 M	NM75	and the section of the section
²1²Pb (Eqb	Lead . ²¹² Bi)	158	disentginge antigene	i aya)	ner is left van excep- tetivity of	any the different	Eqb. after 8 hrs. Reading gives Act. of Pb in eqb. sample.
²1²Bi (Eqb	Bismuth ²¹² Pb)	135	0000 50. 388. 544 980. 51		ac parent activitation	e do varians of Pastars to	Reading gives Act. of Bi in eqb. sample.
212Pb Ec	Lead, ab.	030 or 146×2	S26. 46: 468. 48: 616. 67:	ASet Bano	the 201 time i		Reading gives Total Act. of Pb & Bi in eqb. sample.
212Bi	Bismuth	002 200	468	Biali	and the second second	a the second of a	protection of the second
224Ra	Radium	646×100	248.30	Ban	3.64 D	NM75	in mandel of bake of the served
22500	Badium	778		0.5	1622 Y	NBS73	Reading in grams. Com-

Capintec Inc, 1986. Radionuclide Calibrator Owner's Manual, Revision E. Ramsey. Capintec Inc, NJ.

Pb-212 radionuclide calibrator settings

²⁰⁷ Bi ²⁰⁸ TI	Bismuth	846 -	erotonik en	1.7 nuciiae	38 Y 111 ISOIAT	NBS7 ION and	as m2 W	or 1064, 569.7, 76 'nën in equi	.7. 1110111
212Pb	Lead	571÷2 101	rep Leaning	IC mod	lel			²¹² Pb	
²¹² Bi	Bismuth	489 × 10	a Nijijo se			DS	u _c /%	u _A /%	m
²¹² Pb (Eqt	Lead c. ²¹² Bi)	158	difacting liking	CRC-55 CRC-2	5tR 5R	662 662	5.7 5.7	3.4 3.4	10
²¹² Bi	Bismuth	135	0000 500	0	142125	Napoli et	al., ARI 16	6, 109362 (20)	20).
(Eqb 212Pb Ed	Lead, qb.	030 or 146×2	000.00 980.01 530.051	Aver Aver Aver	topricatio satemania the Editor		eqb. Read	sample. ling gives Total A Bi in eqb. sample	ct. of
212Bi	Bismuth	005-200	572. 379 572. 894	Gradin Brain	No. of Street			na dan ya na s	andifa D antimetr
22•Ra	Radium	646×100	8×8. 30	Brans	3.64 D	NM7	5		novoca estated
22600	Badium	778		0.5	1622 Y	NBS	73 Read	ling in grams. Co	m-

Capintec Inc, 1986. Radionuclide Calibrator Owner's Manual, Revision E. Ramsey. Capintec Inc, NJ.

```
Seems Capintec settings neglect
progeny beyond <sup>212</sup>Bi
```

The 2.6 MeV γ-ray from ²⁰⁸Tl accounts for much of the overall ionization chamber response to ²¹²Pb and its progeny

For decay chain nuclides especially, users should take care when referencing theoretically-determined radionuclide calibrator settings

Radium

Radium

224 Ra

22500

646×100

778

				and the second second	
1.7 3	38 Y	NBS73	Ref. fo	or 1064, 569.7, 76.	7.
nucuae in	isolatio	h and a	as m2 W	nën in equi	IIDIIU
IC mode	l			²¹² Pb	
	Γ)S	u _c /%	u _A /%	m
CRC-55tH	R 6	62	5.7	3.4	10
CRC-25F	6	62	5.7	3.4	
Q	N	apoli et a	al., ARI 166	5, 109362 (202	20).
Me sa	niestion removersa	Pasters AT) 100	eqb.s	sample.	-
Settin	gs res	sult i	n 3x	to 8x e	rrors
	3.64 D	NM75		ndischi (1994 abi) 3 pri bard strata 2 pri bard strata	29279019 2222922
0.5	1622 Y	NBS73	B Read	ing in grams. Cor	n-

Capintec Inc, 1986. Radionuclide Calibrator Owner's Manual, Revision E. Ramsey. Capintec Inc, NJ.

Plenty to consider with alpha emitters

Applied Radiation and Isotopes 184 (2022) 110161

Review

Realization and dissemination of activity standards for medically important alpha-emitting radionuclides

Denis E. Bergeron^{a,*}, Karsten Kossert^b, Sean M. Collins^{c,d}, Andrew J. Fenwick^c

^a Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8462, USA

^b Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany

^e National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 OLW, UK

^d Department of Physics, University of Surrey, Stag Hill, Guildford, GU2 7XH, UK

ARTICLE INFO

ABSTRACT

Keywords:

Liquid scintillation counting Coincidence counting Gamma-ray spectrometry Ra-223 Ra-224 Ac-225 Th-227 Decay chain Activity calibration HPGe Dose calibrator Interest in targeted cancer therapy with alpha-emitting radionuclides is growing. To evaluate emerging radiotherapeutic agents requires precise activity measurements for consistent dose-response relationships and patientspecific dosimetry. National metrology institutes around the world have reported on the development and comparison of activity standards for medically important alpha emitters. This review describes the relevant methods and models underpinning these standards, the generation of new nuclear decay data, and the impacts on preclinical and clinical activity assays using radionuclide calibrators and γ -ray spectrometry.

Summary

ITTLU comparison

Ρ_{EC}?

212PD standard & data

224Ra comparison

Alphastortherapy

Challenges with medical nuclides

1231 dose caltactors

- EC branches and decay data uncertainties
- Decay chain nuclides and pre-equilibrium measurements
- **Demand for standards is high**

«Gephantom

Era of theranostics and targeted molecular radiotherapy

133Ba calibrator misuse

23Ra standard & data

We are hiring 68 Ge mock symme update

23Ba Phantoms

2014 2016 2020 2012 2013 2015 2018 2019 2021 2022 2023 2017

6ACU standard & data

6ACU 818FSIRTI COMParison

Dose calreview

68Ge comparison & data

224Ra standard & data

oov branching

DAI data

NIST Nuclear Medicine Project Team Brian E. Zimmerman (lead), Jeffrey T. Cessna Ryan Fitzgerald, Leticia Pibida, Lizbeth Laureano-Pérez, Ron Collé

Questions about our research or postdoc opportunities? Contact: denis.bergeron@nist.gov

National Institute of Standards and Technology U.S. Department of Commerce

Backup slides

NIST AT A GLANCE Industry's National Laboratory

https://www.nist.gov/calibrations

Contact: jeffrey.cessna@nist.gov