

Modelling of E-Beam and X-Ray Processes

Status & Outlook

Josef Mittendorfer High Tech Consulting

...is a virtual simulation of the subatomic and nuclear word via use of random numbers

Computer needs to know:

- Details about how radiation (γ, e⁻, e⁺, n, p,...) propagates through and interacts with matter.
 - Material and Shape of Irradiator/Packaging/Product

Method is simple (in principle...)

From: A.F.Bielajev, Fundamentals of the Monte Carlo Method for neutral and charged particle transport, 2001

UC ~ $1/\sqrt{N}$

htc

science & technology

Study Electron Scattering...

Is more complex in real world...

Electron Beam:

Beam (Energy, Energy Spectrum, Geometry) Accelerator Exit Window Structure Air Gap Product on Carrier Beam Dump Other Structures in Beam

Virtual Dosimeters

Predict dose in the product at a certain location by modelling the energy deposition ΔE in a volume element with mass Δm Dose= $\Delta E / \Delta m$

Report Dose in a Dosimeter

Report average Dose to Product

Physics Quantities in a Grid (Mapping)

Photon Dose Rate from a Co-60 Source **Flux of Scattered Electrons**

Modelling Tool – Basic Modules

Progress in Geometry Input

CAD Input

Hybrid: CAD + Shapes Shapes (advanced modelling)

Irradiator + Irradiation Container + Product

High energy X-ray fruit irradiation qualification with Monte Carlo code

Ludovic Eychenne ^a \land \boxtimes , François Vander Stappen ^b, Florent Kuntz ^c, Frédéric Stichelbaut ^b, Cédric Dossat ^a, Steven Robin-Chabanne ^a, Nathalie Chatry ^a

Particle Storage File

Declare detector as **Particle Storage** and generate/store events in a File

X-Ray Processing Shielding Design & Verification

Model = Abstraction of Reality

How much detail is necessary, what can be skipped?

CIRMS Meeting 2022 April 12th Josef Mittendorfer High Tech Consulting

Manual Placement & Overlapping Test

Target Model: as realistic as necessary

Dynamic Irradiation Model: Stepping product through beam zone

Static Irradiation Model: Wide Target Area

Model the e-photon conversion only once: Particle Storage File

CIRMS Meeting 2022 April 12th Josef Mittendorfer High Tech Consulting

Model Output

High number of dosimeters allows a statistical interpretation of Min/Max Dose Zones

100,00%

90,00%

80,00%

70,00%

60,00%

50,00%

40,00%

30,00%

20,00%

10,00%

0.00%

Model Verification & Validaton

Intrinsic Modelling Tool V&V

Validate Physics Engine, Modelling Tool Features Benchmark with other Tools and Experiments (Supplier/Community)

Modelling Project V&V

Validate Geometry/Materials/Overlap/Data Manipulation (User)

ASTM 2232

Standard Guide for Selection and Use of Mathematical Methods for Calculating Absorbed Dose in Radiation Processing Applications¹

Ideal For Assessment of Changes...

Summary and Outlook...

CPU Time is an issue for demanding applications and complex studies

- \rightarrow Workstations (64 thread limit)
- \rightarrow Optimized Algorithms GPU based physics engines
- \rightarrow Cluster–based Business Model

Careful Balance: Model "as realistic as necessary" Benchmarking – Competence

Object/Shape based vs. Voxel based (e.g. Input from CT Scans)

In any case: Modelling already is there and will grow as an inevitable tool for industry

Modelling for everyone ? Yes, BUT COMPETENCE IS REQUIRED!