Radiation Damage to DNA: From Initial Ionization Events to Final Damage Products

Sam Ward

Clustered DNA Damage at Various LET (Goodhead, (1994), IJRB, Vol. 65 (1) pp. 13)

Radiation-Induced Ionization-Mediated DNA Radical Formation

• Oxidative (A) and reductive (B) pathways to ionizing radiation-induced damage

 Before thermalization and localization, dissociative electron attachment of radiationproduced excess low energy electrons induce bond cleavage via an excited transient negative ion intermediate

LEE Leads to Strand Break as well as C3' \bullet_{dephos} and ROPO₂ \bullet_{ephos} Formation

Radicals Trapped at 77 K in Irradiated Hydrated DNA

• Radicals found at 77 K in hydrated DNA and considered here:

Ion-Beam (High LET) Irradiation of DNA

Experimental observations:

- Lower total yield of stabilized radicals at 77 K vs. low LET
- Higher relative amount of sugar radicals

Hypotheses:

Different spatial arrangement of energy deposition (track structure) leading to

- Excited state processes
- LEE processes

Penumbra Reactions and Radical Formation/Stabilization in Ion-Beam Irradiated DNA

Radiation Physics and Chemistry 128 (2016) 60-74

Sugar Radical Formation in Ion-Beam Core

Core Reactions and Radical Formation/Stabilization in Ion-Beam Irradiated DNA

Radiation Physics and Chemistry 128 (2016) 60-74

Heavy Ion-Beam Bragg Peak

Sample Preparation for Ion-Beam Irradiation

• Isolated direct-type effect with hydrated ($\Gamma = 12 \pm 2 H_2O/nucleotide$) DNA in anaerobic conditions

LET increases to maximum at Bragg Peak (sample 5).

ACS Omega, 2021, 6, 16600-16611

Radicals Trapped at 77 K in Hydrated DNA

Room Temperature Damage Products

Final Damage Products Considered

thymine glycol

5-hydroxycytosine

4,6-diamino-5formamidopyrimidine

NHCHO

2,6-diamino-4-hydroxy-5,6-dihydrothymine 5-formamidopyrimidine

8-hydroxyadenine

8-hydroxyguanine

(5'R)-8,5'-cyclo-2'-deoxyguanosine

(5'S)-8,5'-cyclo-2'-deoxyguanosine

2'-deoxyadenosine

NH2 HO-CH₂

5.6-dihydrocytosine

8-hydroxy-2'-deoxyguanosine

8-hydroxy-2'-deoxyadenosine

ACS Omega, 2021, 6, 16600-16611

Conclusion: Location of the Bragg Peak is Not the Location of Maximum Damage

Conclusion: Location of the Bragg Peak is Not the Location of Maximum Damage

- Bragg peak determined to be *ca*.
 5.2 mm
- Maximum amount of damage was found to occur just before the Bragg peak

ACS Omega, 2021, 6, 16600-16611

Ne-22 Beam Penetration into Sample Packet (mm)

Collaborators and Support

- Thanks to Profs. Amitava Adhikary, David Becker, and Michael D. Sevilla
- Special thanks to Drs. Kant, Jaruga, Coskun, and Dizdaroglu (NIST) for their collaboration, help, and support
- OU Chemistry Department
- NIH NCI R01CA045424
- CBR,OU
- Thomas Baumann NSCL, MSU for his support and collaboration and NSCL, MSU for giving us ion-beam time

Thank you for your attention!

See poster no. 12

Direct-Type vs. Indirect Effect of Radiation

Direct-type effect

Direct effect + Quasi-direct effect

- Direct ionization of bases, sugar-phosphate (Direct ~effect)
- Ionization of adjacent
- solvation water: fast
 hole/electron transfer.
 (Quasi-direct effect)
- Ionization of bulk water: diffusion of reactive species (•OH, e_{aq}^{-} + others) to DNA. (Indirect effect)

SOBP in Tumor Radiotherapy

Radiotherapy and Oncology, 2010, 95, 3-22