Applications of Plastic Scintillation Dosimetry for Radiation Oncology: <u>A Startup Founder Perspective</u>

François Therriault-Proulx, PhD

Co-founder and CEO, Medscint inc.

2021 Virtual CIRMS Annual Meeting

April 27th 2021

From PhD to Entrepreneur

- 2008-2012: PhD in Medical Physics from Laval University (Quebec)
- 2013-2015: Odyssey Fellow at MD Anderson Cancer Center (Houston, TX)
- 2016-2018: Medical Physicist, Researcher and Entrepreneur
- Since 2018: Full-time CEO and co-founder of Medscint inc.

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History®

Centre hospitalier de l'Université de Montréal

Plastic Scintillation Detector (PSD)

Probe

Scintillator converting ionizing radiation to light. Plastic optical guide transmitting light up to the reader.

Reader

Photodetection module processes and converts light to analog/digital signal.

1				
				Ţ
05	-			
508.27				0

Software/User Interface

Digital signal processing, visualization and analysis.

The Stem Effect Challenge

A

Some of the PSD advantages

SUB-MILLIMETRIC SIZE

MULTI-POINT

MV

MR-COMPATIBLE

ENERGY INDEPENDENCE

ANGULAR INDEPENDENCE

HIGH DOSE RATE LINEARITY

WATER-EQUIVALENT MATERIAL

REAL-TIME DOSIMETRY

FLEXIBLE PROBE DESIGN

ROBUST STEM CALIBRATION

ROBUST TO RADIATION DAMAGES

LOW DEPENDENCE TO TEMPERATURE

A Growing Interest for PSDs

Pubmed : search for (plastic scintillation detector)

2020

Fields & Applications

- LINAC external beam
- HDR brachytherapy
- MR-Linacs
- Radiosurgery
- Proton & heavy ions therapy
- FLASH radiotherapy
- Radiation Biology
- Veterinary radiation oncology

- Research projects
- Quality assurance
- In phantom applications
- Machine/beam characterization
- In vivo dosimetry

Small Field Dosimetry

KEY CHALLENGES

- Volume averaging
- Detector's composition

TECHNICAL REPORTS SERIES NO. 483

SUB-MILLIMETRIC SIZE

Detector dimensions are ideal for small fields.

WATER-EQUIVALENT MATERIAL

No perturbation of the radiation field.

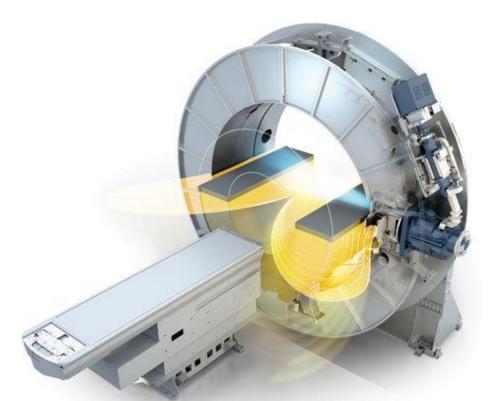
ENERGY INDEPENDENCE Including multiple modalities >100keV

Dosimetry of Small Static Fields Used in External Beam Radiotherapy

An International Code of Practice for Reference and Relative Dose Determination

Sponsored by the IAEA and AAPM

On board MR-imaging LINACs


KEY CHALLENGES

• Change in stem effect

• Effects at the boundaries

Electrons within a MR-LINAC are affected by the magnetic field strength and polarity

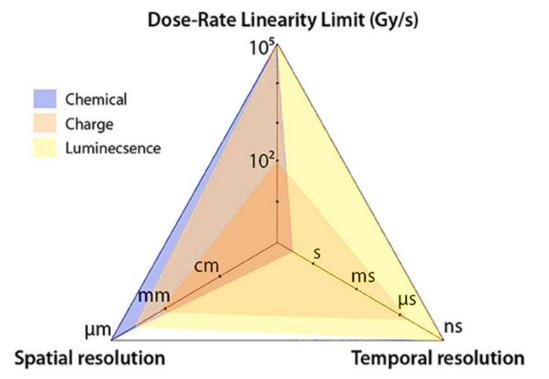
Source: https://www.itnonline.com/article/ promise-mri-guided-radiation-therapy

MR-COMPATIBLE

Accurate dosimetry even in strong magnetic fields

WATER-EQUIVALENT MATERIAL

No perturbation of the radiation field


ROBUST STEM CALIBRATION Complete subtraction of the

Stem components

FLASH Radiotherapy

KEY CHALLENGES

- Ultra-High dose rates
- Fraction of second delivery
- Detectors subject to saturation

REAL-TIME DOSIMETRY Instant dose measurements for dynamic procedures

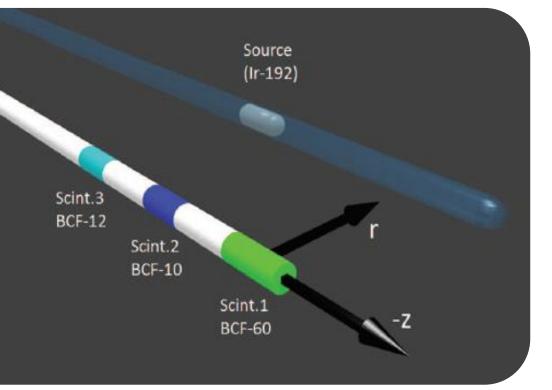
ROBUST TO RADIATION DAMAGES

Can absorb kGys before seeing significant effects

HIGH DOSE RATE LINEARITY Linearity high dynamic range

Source: Ashraf, MR et al. Dosimetry for FLASH Radiotherapy: A Review of Tools and Role of Radioluminescence and Cherenkov Emission, Frontiers in Physics, 2020 8:328

FLASH Radiotherapy


University of Maryland: Poirier Y et al, "Novel Plastic Scintillator for Online Dosimetry in Electron FLASH-RT", work to be presented at AAPM and COMP 2021 annual meetings

HDR Brachytherapy In Vivo Dosimetry

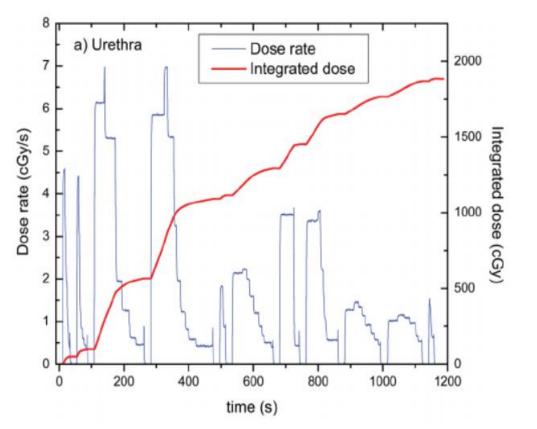
KEY CHALLENGES

- High dose gradients
- Detector vs. source position uncertainty

SUB-MILLIMETRIC SIZE

Accurate dosimetry even in high dose gradients

REAL-TIME DOSIMETRY Instant dose measurements


MULTI-POINT Multiple measurements on a single probe

HDR Brachytherapy In Vivo Dosimetry

KEY CHALLENGES

- High dose gradients
- Detector vs. source position uncertainty

Therriault-Proulx F et al "A phantom study of an in vivo dosimetry system using plastic scintillation detectors for realtime verification of 192Ir HDR brachytherapy" Med Phys. 2011 May;38(5):2542-51.

Can be inserted inside catheters

FLEXIBLE PROBE DESIGN

SUB-MILLIMETRIC SIZE

Accurate dosimetry even in high dose gradients

REAL-TIME DOSIMETRY Instant dose measurements

MULTI-POINT Multiple measurements on a single probe

Perspectives for PSDs

- There is a change in paradigm between standard ion chambers and new optical detectors
 - Photonics technologies evolve rapidly
 - PSDs are versatile and fit well within the rapid-prototyping innovation landscape
 - Light spectral information is key to push the limits of PSDs performances

Conclusion

NOW IS A GOOD TIME TO JUMP ON THE PSD TRAIN, **STILL PLENTY OF INNOVATING RESEARCH AND CLINICAL PROJECTS TO BE PUSHED FORWARD!**

Thank you!

CONTACTS francois.tp@medscint.com