

Evaluation of Proton Dose Accuracy Improvements with Dual-Energy CT

Sina Mossahebi, Pouya Sabouri, Maida Ranjbar, Joshua Strauss, Matthew O'Neil, Jainil Shah, Jerimy Polf

> Maryland Proton Treatment Center Department of Radiation Oncology University of Maryland School of Medicine Baltimore, Maryland

> > **CIRMS Annual Meeting 2021**

Disclosures

- Partially supported by Siemens Healthineers

SECT vs. DECT Comparison Study

Maryland Proton Treatment Center (MPTC) University of Maryland

Varian ProBeam

5 room facility (4 gantries, 1 fixed beam)

- First treatment in February 2016
- 4 of 5 treatment rooms open and treating

Siemens Definition Edge DECT Dual Spiral & TwinBeam

Siemens Aera MRI Scanner 1.5 T

Outline

Introduction

- Proton Therapy
- Proton Therapy Uncertainties
 - Range Uncertainty
- Single Energy CT
- Dual Energy CT

Methods

- Creating Stopping Power Ratio images from DECT
- SPR Image Analysis for Non-Biological Tissue
- SPR and Dose Measurements
 - Tissue surrogate plugs
 - Biological tissue samples
 - Non-biological samples

Results & Conclusions

• Results

SPR and Dose Measurements

- Tissue surrogate plugs
- Biological tissue samples
- Non-biological samples

Conclusions

Outline

Introduction

- Proton Therapy
- Proton Therapy Uncertainties
 - Range Uncertainty
- Single Energy CT
- Dual Energy CT

Methods

- Creating Stopping Power Ratio images from DECT
- SPR Image Analysis for Non-Biological Tissue
- SPR and Dose Measurements
 - Tissue surrogate plugs
 - Biological tissue samples
 - Non-biological samples

Results & Conclusions

• Results

SPR and Dose Measurements

- Tissue surrogate plugs
- Biological tissue samples
- Non-biological samples

• Conclusions

Methods

Introduction

Proton Radiotherapy Overview

- Proton is a charged particle that <u>continuously loses energy</u> as it penetrates the body
- Range depends on Energy

Due to the finite range of the proton beam (Bragg Peak)

- \rightarrow No exit dose!
- \rightarrow Better normal tissue sparing

Range uncertainty: 3.5% of range

Uncertainty to estimate stopping power ratio from CT Hounsfield units (HU)

Sensitivity to anatomical changes

RBE uncertainty at end of range

Motion during treatment and ...

Range uncertainty

University of Maryland School of Medicine

Stopping power determine how "fast" proton loses energy

- CT HU to stopping power ratio calibration has about 3.5% uncertainty
- Translates into 3.5% range uncertainty
 - 3.5 mm at a range of 10 cm
 - 7 mm at a range of 20 cm

Limits Plan Quality & Robustness!

More dose to normal tissue

Less target coverage

Proton Therapy Uncertainties

Single energy CT (SECT) is commonly used in radiation therapy.

- SECT stoichiometric calibration curve does not work well for non-biological tissue
- Manual measurement Density override technique is required

Implants made of "non-tissue" materials:

- Dental implants
- Breast implants
- Chemo ports
- Hip prosthesis
- Spinal hardware
- Surgical clips
- Pacemakers / ICDs
- etc.

Single energy CT (SECT) is commonly used in radiation therapy.

- SECT stoichiometric calibration curve does not work well for non-biological tissue
- Manual measurement Density override technique is required

Calculate water equivalent thickness (WET) of the sample

WET = range in water (no sample) – range in water (with sample)

$$SPR = \frac{Sample WET}{Sample thickness}$$
Example:
$$SPR = \frac{0.64 cm}{0.4 cm} = 1.6$$

Single energy CT (SECT) is commonly used in radiation therapy.

- SECT stoichiometric calibration curve does not work well for non-biological tissue
- Manual measurement Density override technique is required

	SPR	HU				
Material		MPTC HN	MPTC AVG	MPTC BODY	UMMS	
Sientra Silicone Gel Breast Implant (20645-450MPNU)	0.94	-73	-74	-76		
body - 0.3 body - 0.3 CTV CW - 0.3 CTV Total CTV1 (Chest Wall DO_Implant DO_Air to Tissue DO_BBs DO_Scar DO_WIRE	CT Value a	nt and Material As: T Value Assig Relative I Relative Proton : chure set is appr	CT Value CT Value In Material Mass Density Electron Density Stopping Power Stopping Power	-76 HU 0.9625 g/cm3 0.9168 0.9401	£5	
	Stru	Structure set is approved and therefore structure CT values				

Single energy CT (SECT) is commonly used in radiation therapy.

- SECT stoichiometric calibration curve does not work well for non-biological tissue
- Manual measurement Density override technique is required

Why is calibration uncertain?

• HU and SPR are both dominated by electron density ratio

But elemental composition also matters, not a perfect relationship

- Same SPR can have different HU values
- Same HU can have different SPR values

Range uncertainty

Management:

- Use margins = 3.5% range + 1mm
 Larger distal margin than proximal margin
 For prostate @ 20 cm depth: margin= 8 mm
- Do not stop beam in front of organs at riskThis is why lateral beams are used to treat prostate in proton therapy

Can it be reduced?

. . .

- Better CT: Dual Energy CT (DECT)
- Direct measurement of range (prompt gamma, proton radiography)

Methods

Dual Energy CT

Enhance the soft tissue contrast \rightarrow Good for contouring

What we are more interested in proton therapy other than soft tissue enhancement capabilities, DECT:

- Can provide information about the composition of materials
- Can be used to directly calculate the SPR from CT images
- Accurate calculation of SPR \rightarrow better proton range estimation

Purpose

Evaluate potential improvements associated with DECT to estimate SPR for biological and non-biological tissue samples.

Outline

Introduction

- Proton Therapy
- Proton Therapy Uncertainties
 - Range Uncertainty
- Single Energy CT
- Dual Energy CT

Methods

- Creating Stopping Power Ratio images from DECT
- SPR Image Analysis for Non-Biological Tissue
- SPR and Dose Measurements
 - Tissue surrogate plugs
 - Biological tissue samples
 - Non-biological samples

Results & Conclusions

• Results

SPR and Dose Measurements

- Tissue surrogate plugs
- Biological tissue samples
- Non-biological samples

• Conclusions

How to Calculate SPR from the Patient CT Images using DECT

- To calculate SPR, you need two information:
 - <u>Electron density ratio</u>
 - <u>Mean excitation energy</u> (mean value of the ionization and excitation potentials)

Creating SPR images from DECT

DECT outputs using Syngo.via software:

Relative Electron Density and Z_{eff} using Syngo.via software

Relative electron density (RED)

Each pixel value is in Units of HU

Proportional to RED

Effective atomic number (Z_{eff})

Each pixel value is in Units of Z_{eff}

But, to calculate SPR we need Relative Electron Density and Mean Excitation Energy (I_m)

Creating SPR images from DECT

Need to convert \boldsymbol{Z}_{eff} to \boldsymbol{I}_m

UNIVERSITY of MARYLAND School of Medicine

We started with two models:

- Yang Model
- Hünemohr Model

Yang et al, PMB, 55, 2010 Hünemohr et al, PMB, 59, 2014

Creating SPR images from DECT

Using in-house program, SPR images were created by

- Combining electron density (ρ_e) and effective atomic number (Z_{eff}) images
- Using SPR equation for both models

$$\left(\frac{S}{\rho}\right)_{water}^{m} = \frac{\rho_{e}^{m}}{\rho_{e}^{water}} \times \frac{\ln\left[\frac{2m_{e}c^{2}\beta^{2}}{I_{m}(1-\beta^{2})}\right] - \beta^{2}}{\ln\left[\frac{2m_{e}c^{2}\beta^{2}}{I_{water}(1-\beta^{2})}\right] - \beta^{2}}$$

SPR image with ROI

Validating SPR values from DECT

26 tissue surrogate plugs were used from Gammex and CIRS phantoms

For each plug, SPR value was determined from SPR image created from DECT

Histogram of SPR

Validating SPR values from DECT

For all tissues (except lung):

%Difference < 2.5%

Why it's not good for lung?!

High % diff of lung values are due to the limitation of Syngo.via software for low density materials ($Z_{eff}=0$)

Optimizing the SPR model from DECT

Based on our measured data, we created a new model (MPTC model)

DECT Evaluation

- 1) Tissue Surrogate Plugs
- 2) Lung Tissue Sample (Cow and Sheep)
- 3) Other Tissue Samples (brain, liver, foot, belly)

4) Breast Implants (2 samples)

1) Tissue Surrogate Plugs

- SECT and DECT scans were acquired for 9 tissue surrogate plugs (CIRS)
- SPR images created
- SPR and SECT images were imported to TPS

Create treatment plans

• Single field treatment plans (10×10×10 cm³) created on both image sets

Point and Planar Dose Measurements

- SOBP field delivered
- Point dose and 2D planar dose were measured

* Methods

2) Lung Tissue Sample

6 sheep and 1 cow lungs were used in this study

Lungs were partially inflated

DECT and SECT scans acquired

WET and SPR of all lung tissue samples were measured using a MLIC

Creating SPR images from DECT

• SPR images were created

 Compared SECT and DECT calculations to measurements

WET & SPR Calculation

WET & SPR Measurements

3) Other Tissue Samples

For each sample:

- DECT and SECT scans were acquired
- Treatment plans created and delivered

SPR and Planar Dose Measurements

- SPR measured using MLIC
- 2D-planar dose measured using array detector (Matrixx-PT)

4) Breast Implants

Planar dose measurements

DECT and SECT scans of two commonly used breast implants were acquired

Treatment plans were created and delivered

Compared planar dose measurements with TPS dose calculation based on:

- *DECT*
- *SECT*
- SECT with Density Override (DO)

Breast Implant 1

Breast Implant 2

Outline

Introduction

- Proton Therapy
- Proton Therapy Uncertainties
 - Range Uncertainty
- Single Energy CT
- Dual Energy CT

Methods

- Creating Stopping Power Ratio images from DECT
- SPR Image Analysis for Non-Biological Tissue
- SPR and Dose Measurements
 - Tissue surrogate plugs
 - Biological tissue samples
 - Non-biological samples

Results & Conclusions

• Results

SPR and Dose Measurements

- Tissue surrogate plugs
- Biological tissue samples
- Non-biological samples

Conclusions

1) Tissue Surrogate Plugs

2D Planar dose (gamma analysis)

For all plugs at both distal and mid SOBP depths, higher passing rates were observed using DECT

Point dose

Agreement between TPS calculated dose and measurements were within 1.0% (DECT) and 1.5% (SECT) <u>except for lung-inhale</u>

* Gamma analysis criteria 3mm/3%

* Methods

Better agreement observed for

2) Lung Tissue Samples

Water equivalent thickness

2) Lung Tissue Samples

Stopping Power Ratio

For all lung tissue samples, **DECT calculated SPRs** were within **0.03** (**6.2%**) of measurements, and showed better agreement compared to SECT calculation **0.09** (**26.0%**).

Methods

3) Other Tissue Samples

100% Gamma Passing Rate (%) 90% 80% 70% 60% SECT 50% DECT 40% 30% 20% 10% 0% Cow Liver Cow Brain Pork Foot Pork Belly

* Gamma analysis criteria 3mm/3%

• No significant difference in gamma passing rates between DECT and SECT was observed.

2D Planar Dose

* Methods

3) Other Tissue Samples

SPR

- SPR calculation: **DECT showed better agreement with the measurements**.
- Largest difference between DECT and SECT calculation was observed for pork foot.

Methods

4) Breast Implants

2D Planar dose (gamma analysis)

* Gamma analysis criteria 2mm/2%

For all depths, DECT performed better than SECT or SECT density-override (clinical approach).

Conclusions

- We used SPR images created from DECT scans for dose calculations in a clinical proton treatment planning system.
- Better agreement with measurement was observed for calculated SPR using DECT image.
- SPR images constructed from DECT can improve the accuracy of SPR predictions particularly for <u>low density materials</u>.
- Use of DECT for <u>other biological tissues</u> results in negligible differences in calculated TPS dose
- For <u>non-biological tissues</u>, significant differences in TPS dose accuracy was observed

