

Calibrating CT scanners for Patient Dose Calculations in Proton Beam Radiotherapy

April 2019

Jerimy C. Polf

Department of Radiation Oncology Maryland Proton Treatment Center University of Maryland School of Medicine

Overview

- Proton Therapy
- Calibrating CT scanners for proton dose calculations
- CT calibration uncertainties: "what are the error bars"
- Future trends: Dual Energy CT
- Conclusions/Need for standards

<u>Disclosures:</u> National Institutes of Health; National Cancer Institute R01CA187416.

- Prompt gamma imaging for proton radiotherapy treatment verification.

X-Rays

- Protons Stop!

PROTONS

- Photons don't!

Treatment Planning Process: Expanding Margins

Define our Clinical Target Volume (CTV): the tumor + microscopic disease

Oncologist writes a prescription: 72 Gy in 40 treatment fractions.

Planning Target Volume (PTV): account for setup uncertainty, etc.

Expand PTV to account for range uncertainty

Managing Uncertainties

1. Dose Calculation

2. Treatment Delivery

Source of range uncertainty in the patient	Range uncertainty without Monte Carlo	Range uncertainty with Monte Carlo
Independent of dose calculation		
Measurement uncertainty in water for commissioning	$\pm 0.3 \text{ mm}$	$\pm 0.3 \text{ mm}$
Compensator design	$\pm 0.2 \text{ mm}$	$\pm 0.2 \text{ mm}$
Beam reproducibility	$\pm 0.2 \text{ mm}$	$\pm 0.2 \text{ mm}$
Patient setup	$\pm 0.7 \text{ mm}$	$\pm 0.7 \text{ mm}$
Dose calculation		
Biology (always positive) ^	$+\sim 0.8\%$	$+\sim 0.8\%$
CT imaging and calibration	$\pm 0.5\%^{a}$	$\pm 0.5\%^{a}$
CT conversion to tissue (excluding I-values)	$\pm 0.5\%^{b}$	$\pm 0.2\%^{g}$
CT grid size	$\pm 0.3\%^{c}$	$\pm 0.3\%^{c}$
Mean excitation energy (I-values) in tissues	$\pm 1.5\%^{d}$	$\pm 1.5\%^{d}$
Range degradation; complex inhomogeneities	-0.7% ^e	$\pm 0.1\%$
Range degradation; local lateral inhomogeneities *	$\pm 2.5\%^{f}$	$\pm 0.1\%$
Total (excluding *, ^)	2.7% + 1.2 mm	2.4% + 1.2 mm
Total (excluding ^)	4.6% + 1.2 mm	2.4% + 1.2 mm

Range uncertainty formula:

~3.5%*(beam range) + 1-2 mm

Paganetti, PMB (2012)

What we need for dose calculation:

- Proton RT
 - Density and Stopping Power Ratios (SPR)

(or relative stopping power)

$$\frac{Stop}{SPR} = \rho^{tissue} \cdot \frac{(\sum wZ/A)_{tissue}}{(\sum wZ/A)_{water}} \cdot \frac{\left\{ \ln\left(\frac{2m_e c^2 \beta^2}{I_{tissue}(1-\beta^2)}\right) - \beta^2 \right\}}{\left\{ \ln\left(\frac{2m_e c^2 \beta^2}{I_{water}(1-\beta^2)}\right) - \beta^2 \right\}}, \left| \beta^2 \right\}$$

For protons the accepted clinical method for this Is the "*Stoichiometric Method*".

[Schnieder et al, PMB, **41** (1996)]

- 1. <u>Acquire CT scan of phantom with tissue equivalent</u> materials with *known density and elemental compositions*.
- 2. <u>Measure HUs</u> for each tissue equivalent material.
- 3. Use measured HUs to <u>determine coefficients (A, B, C)</u> for "stoichiometric parameterization equation."
- 4. Using stoichiometric parameterization, <u>calculate HUs</u> for a full range of tissues using their published elemental compositions and physical densities.
- 5. <u>Calculate the stopping power ratio (SPR)</u> for each tissue based on known elemental composition and electron densities.
- 6. <u>Plot calculated HU vs. calculated SPR of each tissue.</u>
- 7. <u>Fit line through the HU vs SPR data</u> to be used for treatment planning.

Adipose tissue Blood Brain Breast

Cell nucleus Eye lens GI tract

Heart Kidney

Liver Lung (deflated) Lung (inflated)

...

. . .

Skeleton—sacrum Skeleton—spongiosa Skeleton—vertebral column Skeleton—vertebral column

calculate tissue <u>HU</u> values.

$$HU_i + 1000 = 1000 \times \mu_i^{rel} = \mathcal{A}(\rho_{e_i}^{rel} \widetilde{Z}_i^{3.62}) + B(\rho_{e_i}^{rel} \hat{Z}_i^{1.86}) + C(\rho_{e_i}^{rel})$$

Using tissue composition data from ICRU 46 and 49, We calculate both " Z_{eff} " values and p^{rel}_{e} .

Plug into Stoichiometric formula, and calculate HU for each tissue.

				Tissue Calculated HU					
				Hissue	BODY120KVP	HN120KVP			
			1	Adipose Tissue ICRU 49	-91.10	-90,84	Ī		
				Adipose Tissue	-48.08	-44.04			
				Average soft tissue (male)	12.05	23.55			
				Average soft tissue (female)	1.05	10.95			
				Blood	43.47	59.10			
				Brain	27.65	41.77			
				Breast-50/50	-51.60	-46.51			
				Breast-33/67	-72.92	-70.48			
				Eyelens	40.67	54.12			
<u>۱</u>				GI Tract	15.76	28.69			
)				Heart-bloodfilled	43.85	59.33			
				Kidney	33.24	47.70			
				Liver-healthy	41.80	56.88			
				Liver-cirrhotic	21.87	34.50			
				Lung-inflated	-680.27	-706.52			
				Lymph	19.86	33.95			
				Muscle-striated/ICRU49)	24.16	38.34			
				Muscle-skeletal (ICRU49)	22.90	37.06	_		
	Н	С	Ν	Muscle-Skeletal (adult)	32.48	46.89		ρ_e	ρ_s
	11.4	50.8	0.5	Ovary	35.25	50.02	10	0.051	0.070
	10.2	11.0	3:	Pancreas	33.06	46.60	55	1 050	1 053
	10.7	14.5	2.1	Skin	62,86	77.73	17	1.035	1.040
	10.6	33.2	3.(Spleen	42.93	58.19)3	1.014	1.029
	10.6	9.0	3.1	Testis	26.52	40.60)3	0.994	0.996
	9.6	19.5	5.1	Thyroid	54.58	74.41	0	1.055	1.060
	10.0	11.5	2.1	Bladder-empty	27.19	41.78	13	1.024	1.028
	10.5	13.2	3(Bladder-filled	22.08	36.95	13	1.041	1.045
	10.2	13.9	3.(Water	-5.99	6.33	53	1.050	1.054
	10.3	10.5	3.1	Cartlidae	81.45	101.85	14	1.041	1.044
				Cortical Bone (ICBLIA9)	1058.51	1238.64	;9	0.258	0.258
				Cortical Bone (ICKO45)	1138.03	1333.82			
				Cranium	745.28	876.44			
				Eemur	407.35	485.64			
				Mandible	407.30 831.36	976.20			
	74	30.2	3	Pib 2nd 8 6th	490.19	579.11	413	1 244	1 238
	8.5	40.4	2	RID-2006JOLD	430.13	741.64	260	1.150	1.156
(C4)	6.3	26.1	3.	KID-TOLII Soorum (mole)	339.60	102 02	609	1.355	1.337
(D6, L3)	7.0	28.7	3.	Sacrum (male)	464.06	402.62	477	1.278	1.267
-				Sacrum (remale)	404.00	246,43 502.95			
				Vertebrae-04	201.05	092.80 464.45			
				verteprae-L3	351.20	1740			
				Rediviarrow	7.54	17.40			
				Yellow Marrow	-40.97	-38.10			

calculate tissue <u>SPR</u> values.

ICRU 46 tissue composition values

			Н	С	N	0	Ca	Р	Na	Mg	S	Cl	K	Fe	ι ρ	Н	ρ_e	ρ_s
		Adipose tissue	11.4	59.8	0.7	27.8			0.1		0.1	0.1			0.95	930	0.951	0.979
		Blood	10.2	11.0	3.3	74.5		0.1	0.1		0.2	0.3	0.2	0.1	1.06	1055	1.050	1.053
		Brain	10.7	14.5	2.2	71.2		0.4	0.2		0.2	0.3	0.3		1.04	1037	1.035	1.040
		Breast	10.6	33.2	3.0	52.7		0.1	0.1		0.2	0.1			1.02	1003	1.014	1.029
		Cell nucleus	10.6	9.0	3.2	74.2		2.6			0.4				1.00	1003	0.994	0.996
		Eye lens	9.6	19.5	5.7	64.6		0.1	0.1		0.3	0.1			1.07	1050	1.055	1.060
	$=\frac{\left\{\ln\left(\frac{2m_{e}c^{2}\beta^{2}}{I_{tissue}(1-\beta^{2})}\right)-\beta^{2}\right\}}{\left(\ln\left(\frac{2m_{e}c^{2}\beta^{2}}{\beta^{2}}\right)-\beta^{2}\right)},$	GI tract	10.6	11.5	2.2	75.1		0.1	0.1		0.1	0.2	0.1		1.03	1023	1.024	1.028
		Heart	10.3	12.1	3.2	73.4		0.1	0.1		0.2	0.3	0.2	0.1	1.06	1055	1.051	1.054
$(\Sigma w 7/A)$		Kidney	10.3	13.2	3.0	72.4	0.1	0.2	0.2		0.2	0.2	0.2		1.05	1043	1.041	1.045
CDD tissue tissue		Liver	10.2	13.9	3.0	71.6		0.3	0.2		0.3	0.2	0.3		1.06	1053	1.050	1.054
$SPK = (p^{-1})^{-1}$		Lung (deflated)	10.3	10.5	3.1	74.9		0.2	0.2		0.3	0.3	0.2		1.05	1044	1.041	1.044
$(\Sigma w Z/A)$		Lung (inflated)													0.26	259	0.258	0.258
	$\{\ln[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$																	
	$\left(\left(\left(\frac{1}{water} \left(1 - \beta^2 \right) \right)^2 \right) \right)$																	
	mater (· · ·)	J																
		•••																
		Skeleton-sacrum	7.4	30.2	3.7	43.8	9.8	4.5		0.1	0.2	0.1	0.1	0.1	1.2	9 1413	1.244	1.238
		C1 1							~ ~									

1.156
1.337
1.267

This is the "HU-to-SPR curve" that you Put into your treatment planning system For proton dose calculations.

How accurate is this curve?

Inaccurate calibration = Inaccurate beam range

1) Measured the "water equivalent thickness" (WET) through several pig tissues.

WET = Beam range without sample – beam range with sample

2) Compared them to WET values through the tissues calculated by Treatment Planning System(TPS).

WET(TPS) = thickness*SPR

WET % difference = {[WET(TPS) – WET(Measured)]/WET(Measured)}*100

Dual energy CT calibration for Proton therapy

WET Measurements: "comparing our error bars"

Dual energy CT calibration for Proton therapy

Needs Statement

CT scanners calibrated using to Relate HU to proton SPR

- Standard reference materials for calibration
 - Known, well controlled composition/density
- Improved empirical values for SPR calculation
 - Mean ionization (I) values in literature: 65 eV up to 82 eV
 - ICRU I-value = 75 eV
 - SPR uncertainty due to I uncertainty: ~1-2%
- Standard methods for evaluating uncertainty of CT calibration for proton radiotherapy