Measuring radiation dose through the detection of radiation-induced acoustic waves

Susannah Hicklinga, Hao Leib, Maritza Hobsona, Issam El Naqaa,b

aMcGill University, Montreal, Canada
bUniversity of Michigan, Ann Arbor, USA

\textit{CIRMS 25th Annual Meeting}
\textit{March 27th, 2017}
Dosimetry in radiation therapy

- Variety of dosimetry techniques and protocols required to ensure patients receive the correct dose in the desired location

- Development of advanced delivery techniques presents a dosimetry challenge

- Novel fast and accurate dosimetry techniques are required
Overview of x-ray acoustic computed tomography (XACT)

- Pulsed photon beam deposits energy
- Acoustic waves generated through thermoacoustic effect
- Acoustic waves detected by ultrasound transducers
- Image of initial pressure distribution reconstructed

Xiang et al., Med Phys 40(1), 2013
Theory: Thermoacoustic effect

- Thermoacoustic wave equation:

\[
\nabla^2 p(r, t) - \frac{1}{v_s^2} \frac{\partial^2}{\partial t^2} p(r, t) = -\frac{\beta}{C_p} \frac{\partial}{\partial t} H(r, t)
\]

- \(p \) = Pressure
- \(v_s \) = Speed of sound
- \(\beta \) = Isobaric expansion coefficient
- \(C_p \) = Specific heat capacity
- \(H \) = Heat energy
- \(\Gamma \) = Grüneisen coefficient
Theory: Thermoacoustic effect

• Thermoacoustic wave equation:

$$\nabla^2 p(\mathbf{r}, t) - \frac{1}{v_s^2} \frac{\partial^2}{\partial t^2} p(\mathbf{r}, t) = -\frac{\beta}{C_p} \frac{\partial}{\partial t} H(\mathbf{r}, t)$$

• Initial pressure distribution

$$p(\mathbf{r})|_{t=0} = H(\mathbf{r}) \cdot \Gamma(r)$$

where

$$\Gamma = \frac{v_s^2 \beta}{C_p}$$

\(p\) = Pressure
\(v_s\) = Speed of sound
\(\beta\) = Isobaric expansion coefficient
\(C_p\) = Specific heat capacity
\(H\) = Heat energy
\(\Gamma\) = Grüneisen coefficient
Theory: Thermoacoustic effect

- Thermoacoustic wave equation:
 \[\nabla^2 p(\mathbf{r}, t) - \frac{1}{v_s^2} \frac{\partial^2}{\partial t^2} p(\mathbf{r}, t) = -\frac{\beta}{C_p} \frac{\partial}{\partial t} H(\mathbf{r}, t) \]

- Initial pressure distribution
 \[p(\mathbf{r})|_{t=0} = H(\mathbf{r}) \cdot \Gamma(\mathbf{r}) \]

- Relating pressure to dose
 \[p(\mathbf{r}) = D(\mathbf{r}) \cdot \rho(\mathbf{r}) \cdot \Gamma(\mathbf{r}) \]

Terms:
- \(p = \) Pressure
- \(v_s = \) Speed of sound
- \(\beta = \) Isobaric expansion coefficient
- \(C_p = \) Specific heat capacity
- \(H = \) Heat energy
- \(\Gamma = \) Grüneisen coefficient
Project objective

- Previous work has demonstrated feasibility of using XACT as a dosimetry tool through simulations
- Experimental work has been limited to irradiation of metal blocks
- Present work aims to demonstrate ability of XACT to act as a relative dosimetry technique in water
Experimental set-up

Beam’s eye view

- Primary field
- Transducer
- Preamplifier
- Oscilloscope

Transducer

S. Hickling et al. McGill University
Radiation parameters

- 10 MV flattening filter free photon beam produced by clinical radiotherapy linac (Varian TrueBeam)

- At 10 cm depth (imaging plane):
 - Dose per pulse = 0.77 mGy
 - Temperature increase per pulse = 185 nK

- Pulse repetition frequency = 180 Hz

- Pulse length = 4 μs
Typical transducer signal

Transducer

11.5 cm

4.4 cm
Typical transducer signal

Transducer

11.5 cm

4.4 cm
Imaging parameters

- Signals acquired at 60 angles
- Image reconstructed from sinogram using back projection algorithm
- XACT images are relative dose images
Simple field: Dose comparison

XACT

Film

Percent difference map

[a.u.]

Introduction · Methods · Results · Conclusion
Simple field: Dose comparison

Percent difference map

XACT

Film

Root mean square error = 12.2%
Resolution test: XACT image

Field diagram

- 2.5 mm gap
- 6 cm
- 3 cm

XACT image

[a.u.]
Resolution test: Dose comparison

XACT image

Extracted profiles
MLC field: Dose comparison

XACT image

Extracted profiles

Root mean square error = 13%
Complex field: XACT image

Field diagram

XACT image

S. Hickling et al. • McGill University
Complex field: Dose comparison

XACT image

Extracted profiles

S. Hickling et al. McGill University
Complex field: Dose comparison

XACT image

Extracted profiles

Root mean square error = 10.9%
Outlook: XACT as a dosimeter

- **Motivation for XACT dosimetry:**
 - Real-time
 - Volumetric
 - No beam perturbation
 - Energy independent
 - Potential to combine with ultrasound imaging

- **Future potential applications:**
 - 3D dose mapping
 - Small field dosimetry
 - *In vivo* dosimetry
 - Absolute dosimetry
Acknowledgements

Dr. Stephen Davis
Mr. Kyle O’Grady
Dr. Tanner Connell
Dr. Jan Seuntjens
McGill Medical Physics Unit staff and students

S.H. acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)
Thank you!