Radiation Sterilization of Healthcare Products Past, Present and Future

Kevin O’Hara, Director of Radiation Physics
Sterigenics
CIRMS Meeting, March 2017
Outline

► Introduction to Radiation Processing
 ► Brief Market Overview
 ► Typical Energies, Radiation Types (7.5 MeV X-Rays units, new generation electron accelerators)
 ► Gamma Irradiator Designs (Moving from high volume, low cost to low volume, higher cost processing)

► Challenges in technology advancement
 ► Future Technology Advancements Drive Next-Generation Integrations (Abbott IMRP)

► Complexities of the radiation-processing world
 ► More stringent dose, temperature requirements
 ► Biological Evaluation (i.e. cytotoxicity)

► Discussion
Processing Categories

- **Terminal sterilization processing**
 - 10 - 25 kGy minimum dose
 - Typically achieving an SAL of 10^-6

- **Microbial reduction**
 - 500 Gy - 10 kGy minimum dose
 - Salvage product (bioburden reduction)

- **Viral non-proliferation and leukocyte inactivation**
 - 70 - 150 Gy minimum dose for viral non-proliferation
 - Blood irradiation (15 – 50 Gy) for leukocyte inactivation
Capabilities and Technologies

► Radiation
 ► Gamma Radiation
 ► Electron Beam Radiation
 ► X-Radiation

► Ethylene Oxide (EO) and Moist Heat

► Dry Heat, Hydrogen Peroxide, Nitrogen Dioxide, Peracetic Acid Vapor, Liquid Peracetic Acid, Hydrogen Peroxide (ozone)
Market Overview

► Medical Device Sterilization

► Advanced Applications, Materials Modification, Radiation Crosslinking, Radiation Hardness Testing

► Food Safety, Cosmetics, Pet Treats and Commercial Products

► Pharmaceutical and Biotechnology
Diverse Applications

Drug –device products

Pharma products

Cardiovascular Stent

Complex devices

Coronary Stent

Megan French
Diverse Applications

- Hip Joint
- Heart Valve
- Tissue Scaffold
- Knee Joint
- Skin Graft
Introduction to Radiation Processing

<table>
<thead>
<tr>
<th>Modality</th>
<th>Type of Particle</th>
<th>Energy Range and Dose Rates</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>E–Beam</td>
<td>Electrons</td>
<td>$<1 \text{ MeV} - 12 \text{ MeV}$ 10^3 Gy s^{-1}</td>
<td>Healthcare Product Material Modification Food Treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 MeV</td>
<td></td>
</tr>
<tr>
<td>Gamma</td>
<td>Photons</td>
<td>$1.17, 1.33 \text{ MeV }^{(60)Co}$ 1 Gy s^{-1}</td>
<td>Healthcare Product Medical Research Blood Irradiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.667 \text{ MeV }^{(137)Cs}$ $1 - 10 \text{ Gy min}^{-1}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 kV X–Rays 14 Gy min^{-1}</td>
<td></td>
</tr>
<tr>
<td>X–ray</td>
<td>Photons</td>
<td>$3 \text{ MeV} - 7.5 \text{ MeV}$ 10 Gy s^{-1}</td>
<td>Healthcare Product Food Treatment</td>
</tr>
</tbody>
</table>
Safety - First and Foremost
Basic Gamma Irradiator Designs

![Diagram showing Product Overlapping Source and Multiple-Pass Irradiator Design]

- **Product Overlapping Source**
 - SOURCE
 - 140 cm
 - Typical Product Dimensions: 60 cm (l) x 50 cm (w) x 140 cm (h)

- **Multiple-Pass Irradiator Design**
 - SOURCE
 - Percentages Denote Approximate Contribution to the Targeted Minimum Absorbed Dose
 - 15%, 35%, 35%, 15%

Parameters

- 1 MCi ^{60}Co ~ 7.4×10^{16} photons/sec
- 8 mA beam current ~ 5×10^{16} electrons/sec
Rhodotron Accelerator

- Electrons generated by a heated filament which forms the electron gun.
- A voltage gradient accelerates them through the vacuum tube.
- Electrons pass through the scan magnet, an oscillating magnetic field sweeps the beam back and forth across the scan window.

TT50 (20 kW, 2 mA)
TT1000 (560 kW, 80 mA)
Electron Radiation

8 mA beam current ~ 5×10^{16} electrons/sec
An X-Ray System
X-Ray Processing

Scan Horn

X-Ray Conversion Target

X-Ray Field

Relative Field Intensity
X-Ray Processing

![Graph showing the relationship between treated thickness and photon energy](image)

- Red line: 10 MeV
- Yellow line: 7.5 MeV
- Green line: 5 MeV

The Global Leader in Contract Sterilization Services

Sterigenics

15
Upcoming Publications

► A Comparison of Gamma, E-beam, X-ray and Ethylene Oxide Technologies for the Sterilization of Medical Devices and other Products
 ► To be published by the iia in 2017
 ► www.iiaglobal.com

► Relative Economics and Practicalities of Gamma and X-ray Sterilisation
 ► To be published by the Irradiation Panel in 2017
 ► www.irradiationpanel.org
Traditional Radiation Processing

- High minimum doses and wide ranges
 - 25 kGy – 50 kGy

- Ambient conditions during irradiation
 - Temperature rise in product due to absorbed dose

- Large batch volumes, “simple” products
This Generation of Processing

- Low temperature environments will help protect biologic (migration of radiation-induced free radical is mitigated)

- Potential……
 - Dose Rate Restrictions
 - Inert Atmosphere
 - Temperature Constraints and Cold Chain Management
 - Narrow Dose Range
 - Smaller Product Volumes
The Future is Here

- Increased product & process complexity
- Requirement to protect bio-actives
- Free radical scavengers
- Low temperature irradiation
- Need for non-traditional approaches to sterilization
- Aggressive development time lines for introducing new products
The convergence of technologies has and will continue to drive the development of ever-more complex sterile health care products.

Treatment of symptoms → Cure

To succeed in this environment the radiation processing industry must:
- Discover techniques to minimize radiation damage to bioactives and fragile molecules
- Develop specialized equipment
- Partner with a diverse group of health care product developers
- Function in a more complex regulatory environment
Advancements in Science and Technology Have Made Breakthrough Innovations Possible

- Foundational Engineering (Mechanical, Electrical, and Chemical)
- Polymer Chemistry
- Data Processing
- Pharmacology
- Advanced Imaging

Breakthrough Innovations

John M. Capek, Executive VP
Abbott Ventures
IMRP, Vancouver, 2016
Case Example

FreeStyle Libre

- Skin Physiology
- Day 1 Performance 14-day skin adhesion
- Electrical Engineering
- Materials Science
- Enzyme Biochemistry
- Sensor Drift Shelf-Life Stability
- Biofouling Factory Calibration
- ASIC Memory Radiation Robustness

John M. Capek, Executive VP
Abbott Ventures
IMRP, Vancouver, 2016
Biological Evaluation of Medical Devices

Cytotoxicity
- assess interaction of medical device or extract with mammalian cells.

Sensitization
- estimate the potential for contact sensitization by medical device or extract.

Irritation
- measures the irritation potential of the medical device or extract.

Systemic Toxicity
- assesses the toxicity potential of the leachables and degradation products upon single or multiple exposures.

Genotoxicity
- assessing potential to cause a mutation which could lead to a tumor.

Implantation
- gross and microscopic examination of a device in contact with bone or tissue.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Pharmaceutical</th>
<th>Biologic</th>
<th>Combination Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Ingredient</td>
<td>Non-biologically Active</td>
<td>Metabolically active</td>
<td>Delivery device and pharmaceutical or biologic</td>
</tr>
<tr>
<td>Density JIT</td>
<td>> 0.2 g/cc YES</td>
<td>> 0.2 g/cc YES</td>
<td>< 0.2 g/cc YES</td>
</tr>
<tr>
<td>Temperature Restrictions</td>
<td>Yes</td>
<td>Yes</td>
<td>< 40 °C to prevent H₂ bond rupture</td>
</tr>
<tr>
<td>Dose Rate Restrictions</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DUR Constraint</td>
<td>Yes. Processed with refrigerant.</td>
<td>Yes</td>
<td>Typically no. DUR < 1.6</td>
</tr>
<tr>
<td>Batch Volume</td>
<td>Low processing volumes</td>
<td>Low processing volumes</td>
<td>Can be larger volumes</td>
</tr>
<tr>
<td>Other</td>
<td>Radiochemistry driven (small molecule), Ultraclean (< 1 CFU)</td>
<td>Radiochemistry driven. 50 - 2,000 CFU</td>
<td>CFU range typical of disposable device (0.1 to 10⁶ CFU)</td>
</tr>
</tbody>
</table>
Precision Dose Delivery
Gamma Precision Dose Delivery
X-Ray Precision Dose Delivery
Precision Dose Delivery
Precision Dose Delivery
Personalized Pallet Treatment

- Dynamic Aperture, Dynamic Pallet Rotation
- Modulated Intensity of Photon Field
- Temperature Controlled Irradiation Chamber
- Adjustable Attenuators and Field Flatteners with modulation option (to ‘adjust’ dose rate and optimize dose uniformity)
- Variable Speed Turntable with Speed Modulation Option
Impact on Radiation Dosimetry

Sharpe et al

Fig. 3. Relative response of alanine dosimeters irradiated to 1, 10 and 30 kGy at temperatures between 80 and 310 K.
Low Temperature Dose Mapping

- Temperature Response of Dosimetry
- Potential Variation of Mass
- Heterogeneous Mass Distribution
- Internal Monitoring Locations
- Entire process may require cold-chain management (from transport to irradiation to storage)
Summary
► Radiation-processing world is more and more complex
 ► Customized solutions are becoming more common
 ► Techniques to minimise radiation damage (e.g. low temperature, inert atmosphere, dose sculpting)
 ► New methods for establishing a sterilisation dose to minimise radiation damage of the product

► Specialized customized Irradiators
 ► Partnership with device manufacturer to allow input at early stages of device development

► Discussion
Thank you
Convergence of Technologies (Liu, 2007)

Metals
- Stainless Steel
- Titanium
- Cobalt Chrome
- Tantalum
- Nitinol

Ceramics
- Alumina
- Zirconia
- Calcium/Phosphates
- HA

Polymers

- Synthetic
 - Non-Absorbable
 - Polyethylene
 - Polypropylene
 - PTFE
 - Polyurethanes
 - Polyacrylates
 - Polycarbonates
 - Cyanoacrylates
 - Silicones
 - Absorbable
 - Polypesters
 - Polyanhydrides
 - Polyethers

- Natural
 - Absorbable
 - Collagen
 - GAGs/CEMs
 - Cellulosics
 - Polysaccharides
 - Non-Absorbable
 - Cotton
 - Silk
 - Cellulosics
Convergence of Technologies Leading to the Production of . . .

Products for complex diseases....

- Implantable drug delivery systems
- Drug/biologic enhanced devices
- Implantable smart diagnostic devices
- Microelectronics/nanotechnology

Products that can provide actual cures....

- Regenerative medicine products
- Tissue Engineering scaffolds
- Drugs/Biologics
- Cell and Gene Therapies
Challenges to Technology Innovation

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Pressures</td>
<td>Government restrictions and shift to consumers</td>
</tr>
<tr>
<td>Globalization</td>
<td>Adoption of reference-based pricing (establish baseline product that all competitors are reimbursed against)</td>
</tr>
<tr>
<td>Patent/IP Law</td>
<td>Emerging market intellectual protection laws</td>
</tr>
<tr>
<td>Premium Reimbursement</td>
<td>Health economics and cost effectiveness required beyond efficacy and safety</td>
</tr>
</tbody>
</table>
Future Technology Advancements Drive Next-Generation Integrations

- Heart Diseases
- Cancer
- Diabetes
- Respiratory
- Neuro Disorders

- Imaging Modulation
- Structural Materials
- Nano Technology
- Genomics
- Antimicrobial Materials
- Artificial Intelligence
- Tissue Engineering
- Telemedicine

John M. Capek, Executive VP
Abbott Ventures
IMRP, Vancouver, 2016